Mostrar mensagens com a etiqueta invariância. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta invariância. Mostrar todas as mensagens

5.10.21

Problema resolvido?


Problema:
Num plano são dados: uma circunferência de raio $\;r \;$ e centro $\;P\;$ e uma reta $\;l\;$, sendo $\;d \;$ a distância de $\;P \;$ a $\;l \;$ tal que $\;d \;>\; r \;$.
Se tomarmos $\;M \;$ e $\;N \;$ sobre $\;r \;$ de tal modo que a circunferência de diâmetro $\;MN \;$ seja tangente exterior à circunferência dada. Mostre que existe um ponto $\;A \;$ do plano para o qual todos os segmentos $\;MN \;$ subentendem um ângulo $\;\angle MÂN \;$ constante.

Tiramos um ponto $\;O(0,\;0) \;$, uma reta $\;Ox =l\;$ e uma $\; Oy \;$ (perpendicular a $\; Ox \;$ tirada por $\; O \;$), um ponto $\;P(O,\;d) \;$ de $\; Oy \;$ para centro de uma circunferência de raio $\; r \;$ sendo $\; d > r \;$.
Tomamos por $\; P \;$ uma reta que intersecta $\; Ox \;$ num ponto $\; C(h, 0) \;$ que é centro da circunferência tangente à circunferência $\;(P,\;r) \;$, como na figura se ilustra.



@ geometrias, 5 de Outubro de 2021, Criado com GeoGebra

O centro $\; C\;$ de uma circunferência tangente exterior à dada $\;(P,r) \;$ deve ter um raio $\; s \;$ tal que $\; PC =(r+s)\;$ é hipotenusa do triângulo $\;\Delta [OCP]\;$ rectângulo em $\; O \;$ e, pelo Teorema de Pitágoras, $$\; d^2 + h^2 = (r+s)^2$$
Aos extremos do diâmetro da circunferência $\;(C, s)\;$ cortada por $\;Ox\;$ na nossa construção, chamamos $\; M=(h-s, 0)\;$ e $\;\;N=(h+s,0)\;$.
Aceitemos que existe um ponto de $\;Oy, \;\;A(0,\;k), k>0\;$ que satisfaz a condição do problema, ou seja, tal que as amplitudes dos ângulos $\; \angle MAN \;$ se mantêm invariáveis.
Se tirarmos por $\;O \;$ uma reta tangente à circunferência $\;(P,r),\;$ ficamos com um triângulo $\;\Delta[OTP]\;$, retângulo em $\;T\;$, para além do triângulo $\;\Delta[COP]\;$ rectângulo em $\;O\;$.
A circunferência $\;(O,\;T)\;$ corta $\;Oy\;$ num ponto que designamos por $\; A \;$ e, como nos parece óbvio, só nos falta provar que a amplitude $\; \angle MÂN \;$ em causa se mantém invariável, no caso de tomarmos pelo mesmo processo outras retas $\;P, \;C\;$ perpendiculares a tangentes da circunferência $\;(P,\;r)\;$....
Tal se pode provar, recorrendo à circunferência $\; (A,\; O)\;$ e aos seus diferentes sectores circulares com centro em O e construídos de igual modo ao primeiro sempre com as tangentes a $\;(P,\;r).\;$
Não dependem dos raios $\;s\;$ e deslocando o ponto $\; C\;$ podem ser vistos e vista a sua constância em amplitude dos sectores circulares de $\;(A,O).\;$ $\hspace{0.5 cm}\square$

29.4.18

3D: Círculos como cortes de uma esfera por planos perpendiculares concorrentes num ponto da superfície esférica.

Teorema: Tomemos três planos perpendiculares dois a dois, que concorrem num ponto da superfície de uma esfera dada. As intersecções dos três planos com a esfera são três círculos que passam pelo ponto comum à esfera e aos planos.
Prova-se que a soma das áreas dos três círculos assim obtidos não depende da posição desse ponto na superfície esférica.


adaptado de
Théorème. 30. On donne une sphère et un point fixe P; par ce point on mène trois plans rectangulaires deux à deux et qui déterminent trois cercles; prouver que la somme de ces trois cercles est constante. F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)-

Pode acompanhar as etapas de construção dos planos e dos cortes da esfera deslocando o cursor $\;\fbox{n=1, ..., 6}.\;$

28 abril 2018, Criado com GeoGebra5

$\;\fbox{n=1}\;$ Apresenta-se uma esfera de centro em $\;O\;$ e raio $\;r,\;$ (igual a 2 no caso da nossa ilustração. E também se mostra o ponto $\;P\;$ da superfície da esfera (que pode tomar qualquer posição dessa região).Claro que também se apresenta segmento de reta $\;[OP]\;$ de comprimento $\;\overline{OP}=r.\;$
$\;\fbox{n=2}\;$ Apresenta-se o plano vermelho, primeiro de três planos perpendiculares dois a dois que passam por $\;P.\;$ Também é apresentado o segmento da perpendicular a esse plano tirada por $\;O, \;$a saber $\;[OA]\;$ cujo comprimento $\;a \leq r\;$ representa a distância de $\;O\;$ ao plano vermelho e ao círculo vermelho secção da esfera por ele cortada. Sendo do plano vermelho, $\;A\;$ é ponto médio de qualquer diâmetro do círculo vermelho, já que $\;OA\;$ é perpendicular a todas as retas do plano e, assim $\;A\;$ é o centro do círculo vermelho de centro $\;A\;$ e raio $\;\overline{PA}=r_1 \leq r.\;$
Em cima, aparece o valor aproximado da área do círculo vermelho calculado: $\; \pi \times r_1^2\;$
$\;\fbox{n=3}\;$ Oculta-se o plano vermelho e mostra-se o plano verde perpendicular ao vermelho e o respectivo círculo verde ambos a passar por $\;P:\;$
mais o segmento da perpendicular ao plano verde - $\;OB\;$ de comprimento $\;b \leq r\;$ distância de $\;O\;$ ao plano verde e círculo verde de centro $\;B\;$ e raio $\; PB = r_2 \leq r \;$
em cima, aparece o valor aproximado da área calculada do círculo verde: $\; \pi \times r_2^2.\;$
$\;\fbox{n=4}\;$ Oculta-se o plano verde e mostra-se o plano azul perpendicular ao plano verde e ao plano azul e o respectivo círculo azul,ambos a passar por $\;P\;$
mais o segmento da perpendicular ao plano azul - $\;OD\;$ de comprimento $\;d \leq r\;$ que é a distância de $\;O\;$ aos plano e círculo azul de centro $\;D\;$ e raio $\;PD=r_3 \leq r.\;$
em cima, aparece o valor aproximado da área calculada do círculo azul: $\; \pi \times r_3^2.\;$
$\;\fbox{n=5}\;$ Oculta-se o plano azul. Os três círculos nas condições da hipótese do teorema estão apresentados.
$\;\fbox{n=6}\;$ Nesta etapa, ocultamos os círculos e mantemos todos os segmentos cujos comprimentos interessam para a demonstração que já foram sendo construídos e são dependentes (ou não) da posição de $\;P\;$.
  • $\;OP\;$ não depende da posição de $\;P\;$ na superfície da esfera dada de centro $\;O\;$ e raio $\;r.\;$
    $$\overline{OP}= r$$
  • Na figura mostra-se o paralelipípedo de diagonal $\;OP\;$ e dimensões $\;\overline{OA}=a, \;\overline{OB}=b, \overline{OD}=d,\;$ que variam com a posição de $\;P\;$ e, por isso, $$\overline{OP}^2 = \overline{OA}^2 + \overline{OB}^2+ \overline{OD}^2 \;\;\mbox{ou}\;\; r^2= a^2 + b^2+d^2$$
  • Os raios dos círculos $\;r_1 =\overline{PA}, \;r_2 = \overline{PB}, \;r_3 = \overline{PC}\;$ são diagonais respetivamente dos rectângulos $\; b \times d, \;d\times a, \; a \times b \;$ e por isso, $$r_1^2=b^2+d^2, \; r_2^2= d^2+a^2, \; r_3^2= a^2+b^2\;$$
  • Finalmente,sobre a soma das áreas dos círculos podemos escrever o seguinte $$\pi \times r_1^2 + \pi \times r_2^2 + \pi \times r_3^2 = \pi \times \left(r_1^2 + r_2^2 + r_3^2 \right) = $$ $$= \pi \times \left( b^2+d^2 + d^2+ a^2+ a^2+b^2 \right) = 2\pi \times \left(a^2+b^2+d^2\right)=2\pi r^2$$ Fica assim provado que, por ser igual a $\;2\pi r^2,\;$ a soma das áreas não depende da posição de $\;P\;$ na superfície esférica dada. $\;\;\;\;\;\blacksquare$
    O valor aproximado da soma das áreas dos três círculos é calculado e mostrado acima. Pode deslocar o ponto $\;P\;$ na superficie esférica para ver que essa soma não depende da posição de $\;P\;$

20.3.18

Um quadrado, um ponto variável sobre um lado, um ângulo e sua invariância



António Aurélio Fernandes passou por um problema no YouTube que por lá foi resolvido usando vetores e apresentou-o a si mesmo aqui a pensar numa demonstração mais elementar.

Enunciado:
No quadrado $\;[ABCD]\;$ toma-se um ponto $\;P\;$ qualquer sobre $\;BC.\;$ Por $\;A\;$ traça-se a semi reta $\;AP\;$ e, em seguida, por $\;C\;$ tira-se uma perpendicular a $\;AP\;$ que encontra a reta $\;AB\;$ em $\;Q.\;$
Provar que o ângulo em $\; \angle A\hat{Q}P\;$ se mantém constante quando $\;P\;$ toma diferentes posições em $\;[BC].\;$



Seguir os passos da construção e demonstração
$\;\fbox{n=1}:\;$ Apresenta-se o quadrado $\;[ABCD]\;$ e um ponto $\;P\;$ de $\;[BC].\;$

$\;\fbox{n=2}:\;$ Apresenta-se $\;\dot{A}P\;$ (diferente para cada $\;P\;$ de $\;[BC]\;$ e a perpendicular a $\;AP\;$ tirada por $\;C\;$ que interseta $\;\dot{A}B\;$ em $\;Q\;$

14 março 2018, Criado com GeoGebra



$\;\fbox{n=3}:\;$ Finalmente acrescentamos $\;[PQ]\;$ e o ângulo $\;B\hat{Q}P\;$ rotulado pelo seu valor (amplitude) em graus. Pode deslocar $\;P\;$ sobre $\;BC\;$ para verificar que o seu valor se mantém invariável e que quando $\;P = C, \;\; [AP] = [AC]\;$ é uma das diagonais do quadrado e, para esta posição de $\;P,\;$ a perpendicular a $\;AP\;$ tirada por $\;C\;$ é perpendicular a $\;AC\;$ em $\;C=P\;$ e, por isso, paralela a $\;BD,\;$ já que as diagonais de um quadrado são perpendiculares.
Para esta posição de $\;P=C\;$ é bem óbvio que $\;AQP=AQC\;$ é um triângulo retângulo em $\;P=C\;$e isósceles, já que $\;CQ \perp AC \wedge AC=CQ =BD\;$ e $\;\angle C\hat{A}Q = \angle A\hat{Q}C \;$

$\;\fbox{n=4}:\;$ Acrescentamos as diagonais $\;CA, \;BD\;$

$\;\fbox{n=5}:\;$ A situação descrita acima para o caso de $\;P\;$ assumir a posição de $\;C\;$ é aplicável a qualquer $\;P\;$ de $\;BC,\;$ observando o quadrado de lado $\;BP\;$, $\;[BPEF], \; $ já que a sua diagonal $\;BE\;$ é um segmento da diagonal $\;BD\;$ de $\;[ABCD]\;$ e $\;PF \parallel CA\;$.