28.5.18

Estudo do Problema de Castillon

Problema: Inscrever numa dada circunferência um triângulo [DEF] em que cada um dos seus lados passa por um único de três pontos dados A, B, C : por exemplo $\;A\in FE, \;B \in ED, \;C \in DF\;$



Em síntese, a construção, que a seguir se apresenta, passo a passo, não é óbvia por não serem óbvios os elementos que vão sendo determinados em cada passo. Os autores de F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- a propósito, esclarecem: "A síntese permite a quem sabe, expôr o que conhece; é habitual usá-la nos elementos de geometria, na demonstração de teoremas; mas a síntese não pode ser usada na resolução de problemas porque não pode indicar a priori cada uma das construções a fazer. A análise é por excelência, o método para descobrir; e, por conseguinte, usa-se constantemente na solução das questões que ainda não estudámos."
Fazendo variar o cursor $\;\fbox{n= 1, 2, … 10}\;$ pode seguir sucessivos passos da construção, envolvendo potências de pontos relativamente à circunferência dada que servem para provar igualdade de ângulos interessantes cuja utilidade é desvendada pela análise do problema resolvido (ou pelo resultado obtido :-).





Transcrevemos a seguir uma adaptação do excerto de metodologia para a resolução deste problema seguindo
F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)-
acompanhadas das figuras ilustrativas que lá se encontram.


Problema de Castillon: 51. On donne trois points $\;A, \;B, \;C,\;$ et une circonférence; inscrire dans cette circonférence un triangle $\;DEF,\;$ tel que chaque côté passe par un des points donnés.



Considerado o problema resolvido, a imagem ao lado esclarece que, sendo $\;GF\;$ paralela a $\;BC\;$ e que $\;GE\;$ interseta $\;BC\;$ em $\;H,\;$ sendo iguais os ângulos ($\;BHE\;$ ou) $\;\angle B\hat{H}G\;$ e $\: \angle H\hat{G}F\;$ alternos internos no sistema de retas paralelas $\;GF,\; BC\;$ cortadas pela secante $\;HG\;$ e também $\;\angle H\hat{G}F;$ e $\;BDC\;$ são iguais por estarem inscritos num mesmo arco $\;ETF.\;$ Assim sendo, são semelhantes os triângulos $\;BHE\;$ e $\;BCD\;$ com o ângulo $\;B\;$ comum e os ângulos $\;BHE\;$ e $\;CDB\;$ iguais. E, pelo menos, o ponto $\;H\;$ pode ser determinado por $\;HB.BC=BT^2.\;$
Começamos por aí.
É preciso determinar um dos pontos $\;D,\; E\;$ ou $\;F\;$ para que o problema fique resolvido.

Por isso, podemos dizer que precisamos de resolver o seguinte
Problème
52. On donne deux points $\;A, \;H,\;$ une circonférence et une droite $\;BC.\;$ Déterminer sur cette circonférence un point $\;E,\;$ tel qu'en le joignant aux deux points donnés $\;A,\; H,\;$ la corde $\;FG\;$ soit parallèle à la droite $\;BC.\;$ Soit le problème résolu et $\;FG\;$ parallèle à $\;BC.\;$



Consideremos o problema resolvido e $\;FG\;$ paralela a $\;BC.\;$ De forma análoga ao feito no caso anterior, acrescentamos à ilustração (das condições do problema resolvido) uma paralela a $\;HA\;$ tirada por $\;F,\;$ que intersecta a circunferência dada em $\;L\;$ e traçamos a reta $\;LG\;$ que intersecta $\;HA\;$ em $\;M.\;$

Nestas condições, temos $\; \angle G\hat{F}L = \angle D\hat{H}M, \; \mbox{e} \; \angle F\hat{L}M+\angle L\hat{M}H = \pi, $
$\; \angle G\hat{E}F +\angle F\hat{L}M = \pi \; \;\mbox{sendo por isso,}\;\;\angle G\hat{M}H = \angle H\hat{E}A\; $
e, em consequência,
$ \Delta [HGM] \sim \Delta [HEA],\;$ dos quais $\angle \hat{H}\; $ é ângulo comum. E é essa semelhança que nos permite escrever $$\frac{\overline{HM}}{\overline{HE}} = \frac{\overline{HG}}{\overline{HA}} \; \Leftrightarrow \overline{HM} \times \overline{HA}= \overline{HE} \times \overline{HG}= \overline{HT}^2 $$ que nos permite determinar sobre $\;HA\;$ o ponto $\;M,\;$ colinear de $\;G, \;L\;$ sendo
$\;\angle B\hat{H}M = \angle G\hat{F}GL\; \Leftarrow \;(BH \parallel GF \wedge HM \parallel FL )$




E, assim, o problema de Castillon depende agora da resolução do
Problème
53. Par un point donné $\;M,\;$ mener une sécante telle que l'angle inscrit $\;L\hat{F}G\;$, qui correspond à la corde interseptée $\;GL,\;$ soit égale à un anglé donnée $\;A\hat{H}B.\;$



Por um ponto qualquer da circunferência dada, tiramos paralelas a $\;BH\;$ e a $\;MH\;$ ou seja inscrevemos na circunferência um ângulo de amplitude igual a $\; \angle B\hat{H}M\;$
Em seguida traçamos a corda correspondente a esse ângulo inscrito. As cordas correspondentes a ângulos inscritos iguais em amplitude a ele, são iguais e tangentes a uma circunferência concêntrica à dada. Determinada essa nova circunferência pelo centro e pelo pê da perpendicular da corda do dito ângulo inscrito com amplitude igual a $\; \angle B\hat{H}M,\;$ o problema de Castillon fica resolvido tirando por $\;M\;$ a tangente a ela que intersectará a circunferência inicialmente dada nos pontos $\;G, L\;$

Por esse ponto $\;G\;$, finalmente determinado, a paralela a $\;BC\;$ por ele tirada intersecta a circunferência inicial em $\;F.\;$
$\;D\;$ ficará determinado na circunferência pela reta $\;CF\;$ e
o ponto $\;E\;$ ficará determinado sobre a circunferência pela reta $\;DB\;$ ou pela reta $\;FA.\;$… $\blacksquare$

29.4.18

3D: Círculos como cortes de uma esfera por planos perpendiculares concorrentes num ponto da superfície esférica.

Teorema: Tomemos três planos perpendiculares dois a dois, que concorrem num ponto da superfície de uma esfera dada. As intersecções dos três planos com a esfera são três círculos que passam pelo ponto comum à esfera e aos planos.
Prova-se que a soma das áreas dos três círculos assim obtidos não depende da posição desse ponto na superfície esférica.


adaptado de
Théorème. 30. On donne une sphère et un point fixe P; par ce point on mène trois plans rectangulaires deux à deux et qui déterminent trois cercles; prouver que la somme de ces trois cercles est constante. F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)-

Pode acompanhar as etapas de construção dos planos e dos cortes da esfera deslocando o cursor $\;\fbox{n=1, ..., 6}.\;$

28 abril 2018, Criado com GeoGebra5

$\;\fbox{n=1}\;$ Apresenta-se uma esfera de centro em $\;O\;$ e raio $\;r,\;$ (igual a 2 no caso da nossa ilustração. E também se mostra o ponto $\;P\;$ da superfície da esfera (que pode tomar qualquer posição dessa região).Claro que também se apresenta segmento de reta $\;[OP]\;$ de comprimento $\;\overline{OP}=r.\;$
$\;\fbox{n=2}\;$ Apresenta-se o plano vermelho, primeiro de três planos perpendiculares dois a dois que passam por $\;P.\;$ Também é apresentado o segmento da perpendicular a esse plano tirada por $\;O, \;$a saber $\;[OA]\;$ cujo comprimento $\;a \leq r\;$ representa a distância de $\;O\;$ ao plano vermelho e ao círculo vermelho secção da esfera por ele cortada. Sendo do plano vermelho, $\;A\;$ é ponto médio de qualquer diâmetro do círculo vermelho, já que $\;OA\;$ é perpendicular a todas as retas do plano e, assim $\;A\;$ é o centro do círculo vermelho de centro $\;A\;$ e raio $\;\overline{PA}=r_1 \leq r.\;$
Em cima, aparece o valor aproximado da área do círculo vermelho calculado: $\; \pi \times r_1^2\;$
$\;\fbox{n=3}\;$ Oculta-se o plano vermelho e mostra-se o plano verde perpendicular ao vermelho e o respectivo círculo verde ambos a passar por $\;P:\;$
mais o segmento da perpendicular ao plano verde - $\;OB\;$ de comprimento $\;b \leq r\;$ distância de $\;O\;$ ao plano verde e círculo verde de centro $\;B\;$ e raio $\; PB = r_2 \leq r \;$
em cima, aparece o valor aproximado da área calculada do círculo verde: $\; \pi \times r_2^2.\;$
$\;\fbox{n=4}\;$ Oculta-se o plano verde e mostra-se o plano azul perpendicular ao plano verde e ao plano azul e o respectivo círculo azul,ambos a passar por $\;P\;$
mais o segmento da perpendicular ao plano azul - $\;OD\;$ de comprimento $\;d \leq r\;$ que é a distância de $\;O\;$ aos plano e círculo azul de centro $\;D\;$ e raio $\;PD=r_3 \leq r.\;$
em cima, aparece o valor aproximado da área calculada do círculo azul: $\; \pi \times r_3^2.\;$
$\;\fbox{n=5}\;$ Oculta-se o plano azul. Os três círculos nas condições da hipótese do teorema estão apresentados.
$\;\fbox{n=6}\;$ Nesta etapa, ocultamos os círculos e mantemos todos os segmentos cujos comprimentos interessam para a demonstração que já foram sendo construídos e são dependentes (ou não) da posição de $\;P\;$.
  • $\;OP\;$ não depende da posição de $\;P\;$ na superfície da esfera dada de centro $\;O\;$ e raio $\;r.\;$
    $$\overline{OP}= r$$
  • Na figura mostra-se o paralelipípedo de diagonal $\;OP\;$ e dimensões $\;\overline{OA}=a, \;\overline{OB}=b, \overline{OD}=d,\;$ que variam com a posição de $\;P\;$ e, por isso, $$\overline{OP}^2 = \overline{OA}^2 + \overline{OB}^2+ \overline{OD}^2 \;\;\mbox{ou}\;\; r^2= a^2 + b^2+d^2$$
  • Os raios dos círculos $\;r_1 =\overline{PA}, \;r_2 = \overline{PB}, \;r_3 = \overline{PC}\;$ são diagonais respetivamente dos rectângulos $\; b \times d, \;d\times a, \; a \times b \;$ e por isso, $$r_1^2=b^2+d^2, \; r_2^2= d^2+a^2, \; r_3^2= a^2+b^2\;$$
  • Finalmente,sobre a soma das áreas dos círculos podemos escrever o seguinte $$\pi \times r_1^2 + \pi \times r_2^2 + \pi \times r_3^2 = \pi \times \left(r_1^2 + r_2^2 + r_3^2 \right) = $$ $$= \pi \times \left( b^2+d^2 + d^2+ a^2+ a^2+b^2 \right) = 2\pi \times \left(a^2+b^2+d^2\right)=2\pi r^2$$ Fica assim provado que, por ser igual a $\;2\pi r^2,\;$ a soma das áreas não depende da posição de $\;P\;$ na superfície esférica dada. $\;\;\;\;\;\blacksquare$
    O valor aproximado da soma das áreas dos três círculos é calculado e mostrado acima. Pode deslocar o ponto $\;P\;$ na superficie esférica para ver que essa soma não depende da posição de $\;P\;$