28.6.14

Resolver problema de construção, usando análise e síntese (4)


Problema:     Construir um triângulo isósceles de que se conhecem o circulo circunscrito e a soma da base com a altura correspondente.
Th. Caronnet, Exércices de Géométrie. Vuibert. Paris:1947

Para obter a solução por construção, temos de fazer a análise do problema a partir do problema como se ele estivesse resolvido.
  1. Suponhamos o problema resolvido: Teremos um triângulo isósceles $\;[ABC]\; (AB=AC),\;$ inscrito no círculo circunscrito $\;(O)\;$ dado e tal que a altura $\;AD=h\;$ e a base $\;BC=a\;$ têm soma dada $\;s=a+h.\;$
    • Num triângulo isósceles a altura $\;AD\;$ bisseta a base $\;BC,\;$ por isso passa pelo circuncentro $\;O\;$. Podemos escrever $\;AD+2BD=s.\;$ Quando prolongamos $\;AD\;$ até $\;E\;$ tal que $\;DE=BC,\;$ temos $\;AE=s\;$ e $\;2BD=DE,\;$ donde $\;\displaystyle \frac{BD}{BE} =\frac{1}{2}.$
    • Se prolongarmos $\;EB\;$ até encontrar no ponto $\;F\;$ a tangente a $\;(O)\;$ tirada por $\;A\;$, temos um novo triângulo $\;[EAF]\;$, retângulo em $\;A\;$, que é obviamente semelhante ao triângulo $\;[EDB]: \;\;\; \displaystyle \frac{AF}{AE}=\frac{DB}{DE} = \frac{1}{2};\;\;$ $\;\;AE=s\;$ e $\;\displaystyle AF=\frac{s}{2}.\;$
A construção (sintética, a seguir) é sugerida pelas relações descobertas na análise. Pode segui-la fazendo variar os valores de $\;n\;$ no cursor $\;\fbox{n=1,..., 6}.\;$

© geometrias, 28 de Junho de 2014, Criado com GeoGebra



  1. É dado um segmento de comprimento $\;s=a+h\;$ e uma circunferência de centro $\;O\;$ circunscrita do triângulo procurado.
  2. Assim, começamos por tomar para vértice $\;A\;$ um ponto qualquer da circunferência dada e traçamos o diâmetro que passa por $\;A\;$ e contém a altura $\;h\;$ relativa a $\;a.\;$.
  3. De acordo com o sugerido na análise feita, interessa determinar o ponto $\;E\;$, desse diâmetro tal que $\;AE=a+h\;$: $\;AO.(A,s).\;$
  4. E, em seguida, determinamos o ponto $\;F\;$ da tangente a $\;(O)\;$ tirada por $\;A\;$ e à distância $\;\displaystyle \frac{s}{2}\;$ de $\;A.\;$
  5. A reta $\;EF\;$ interseta a circunscrita $\;(O\;)\;$, para os dados da nosso problema, por exemplo, $\;B\;$. A perpendicular a $\;AE\;$ (ou paralela a $\;AF\;$) interseta $\;(O)\;$ num ponto $\;C\;$, para além de $\;B\;$ e $\;AE\;$ em $\;D\;$. O triângulo $\;[ABC]\;$ de altura $\;AD\;$ é uma das soluções do problema: Como, por construção, $\;O \in AE,\;$ e $\;AE\perp BC, \;$ então $\;AD=DB\;$. Assim fica provado que $\;[ABC]\;$ está inscrito em $\;(O)\;$ e é isósceles. □
  6. Outra solução, será o triângulo $\;[AB_1C_1]\;$ de altura $\;AD_1\;$ e base $\;B_1C_1\;$
Para cada $\;A\;$ de $\;(O)\;$ haverá duas soluções, para os dados que se mostram inicialmente. Fazendo variar o comprimento do segmento $\;s\;$ pode ver em que condições há 0, 1 ou 2 soluções para o problema

26.6.14

Resolver problema de construção, usando análise e síntese (3)


Problema:     Num dado triângulo, traçar uma linha paralela à base de tal forma que se se traçarem a partir dos seus extremos linhas paralelas aos lados até cortarem a base, somadas meçam o dobro que a linha inscrita. (31/12/1881)
Charles Lutwidge Dodgson, Um conto enredado e outros problemas de almofada. RBA: 2008

Para obter a solução por construção, temos de fazer a análise do problema a partir do problema como se ele estivesse resolvido. (ilustrada, na figura, para os valores $\;2\;$de $\;n\;$ no cursor $\;\fbox{n=1,..., 4}.\;$
  1. São dados $\;A, \;B, \;C\;$. Resolver o problema consiste em determinar, por construção, pontos $\;C'\;$ sobre $\;AB\;$ e $\;B'\;$ sobre $\;AC\;$, de tal forma que $\;B'C' \parallel BC \wedge C'E+B'D = 2\times B'C',\;$ sendo $\;D, \;E\;$ pontos de $\;BC\;$ e $\;B'D \parallel AB\;$ e $\;C'E \parallel AC. \;$
  2. Supor que o problema está resolvido é supor que $\;B'C'\;$ está situada de tal forma que $\;B'D\;$ e $\;C'E\;$, paralelas aos lados, somados dêem $\;2B'C'$.
    De acordo com a proposição 34 do Livro I dos Elementos de Euclides
    $\;B'D =C'B\;$ e $\;C'E=B'C\;$ e portanto $\;B'C + C'B = 2B'C'$.
    E há um ponto $\;L\;$ de $\;B'C'\;$ que o divide em duas partes sendo uma igual a metade de $\;B'C\;$ e outra igual a metade de $\;C'B.\;$ Se deteminarmos este ponto $\;L,\;$ por ele passa uma única paralela a $\;BC$...

  3. A construção (sintética, a seguir) está ilustrada para os valores $\;3,\; 4\;$ de $\;n\;$ no cursor $\;\fbox{n=1,..., 4}.\;$

    © geometrias, 25 de Junho de 2014, Criado com GeoGebra



    Considerando a decomposição (análise) do problema antes feita, apresentamos, agora sinteticamente, os passos da determinação da reta $\;B'C'\;$ .
  4. Para determinar o ponto $\;L\;$ sobre $\; B'C'\;$ paralela a $\;BC,\;$ de tal modo que $\;2LC'=C'B\;$ e $\;2LB'=B'C \;$ (i.e. $\;2(LC'+LB')= 2C'B' =C'B+B'C = B'D+C'E\;$ ), podemos usar um ponto $\;F\;$ qualquer de $\;AB\;$ (ou de $\;AC\;$) e por ele tirar uma paralela a $\;BC.\;$
  5. Depois é só tomar $\;G\;$ sobre essa paralela de tal modo que $\;2FG =FB\;$ e $\;L\;$ estará sobre a reta $\;BG.\;$ Claro que, fazendo o mesmo para o lado $\;AC,\;$ $\;L\;$ estará sobre $\;CK,\;$ estando $\;K\;$ sobre uma paralela a $\;BC\;$ tirada por um ponto $\;H\;$ de $\;AC\;$ sendo $\;2KH=HC.\;$ $\;L\;$ é único $\;CK.BG \;$ e $\;B'C'\;$ é a única paralela a $\;BC \;$ tirada por $\; L$
  6. São semelhantes os triângulos $\;[FBG]\;$ e $\;[C'BL]\;$ e os lados opostos ao ângulo $\;\hat{B}\;$ comum são homólogos e $\;BC' = 2C'L,\;$ já que por construção $\;FB=2FG.\;$ Do mesmo modo, se mostra que $\;2LB'=B'C\;$ □
O ponto $\;F\;$ pode tomar as diversas posições sobre $\;AB.\;$ Verá que a variação de $\;F\;$ sobre $\;AB\;$ não afeta a posição de $\;L.\;$ No caso da nossa construção, quando $\;F\;$ toma a posição de $\;C',\;$ $K\;$ toma a posição de $\;B',\;$ $\;G\;$ e $\;K\;$ coincidem com $\;L.\;$ Os pares de arcos iguais (centrados em $\;F\;$ e $\;M,\;$ e em $\;H\;$ e $\;N$)   acompanham a deslocação de $\;F\;$ e ilustram as relações estabelecidas.