4.4.20

Construção de uma tangente com recurso a uma só régua

Seja uma cónica determinada por cinco pontos A, B, C, D e E. Com exclusivo recurso a retas, determinar a tangente a essa cónica em A.





Nota
Comecemos por considerar as retas AC, CE, EB, BD, DA. Paul Yiu apresenta como passos para uma resolução:
  1. P= AC ⋂ BD
  2. Q= AD ⋂ CE
  3. R= PQ ⋂ BE
para concluir: AR é a tangente em A.

Vamos procurar, entre as construções feitas neste blog, alguma que se veja e assim trate o problema da tangente a um dos pontos definidores da cónica. Demonstração?
-------------------
Paul Yiu. Introduction to the Geometry of the Triangle. Department of Mathematics Florida Atlantic University (version 2.0402) April 2002

7.2.20

Entre triângulos, porismo e perspectividade?

Numa entrada de 7 de Maio de 2009, apresentávamos um problema interactivo para ser resolvido recorrendo a algumas ferramentas - régua e compasso - a partir de um triângulo ABC e um ponto P dados,
determinar o triângulo (que tenha os mesmos circuncírculo e incírculo) porístico de ABC dado, sendo P, dado, um dos seus vértices.... forçosamente ponto do circuncírculo de ABC.
Recentemente, restauramos essa entrada (da qual perderamos de vista a construção dinâmica,) sem nos atrevermos à recuperação como tarefa interactiva. Pode consultar a restauração, passo a passo, em Triângulos Porísticos.
Verá, nessa recuperação, que há uma infinidade de triângulos poristicos de ABC, como há uma infinidade de pontos P no circuncírculo.
Nesta entrada chamamos a atenção para a existência de um triângulo A'B'C' porístico de ABC que se obtém como imagem por reflexão de ABC relativamente ao espelho IO perpendicular a AA', BB' e CC' (o que nos diz que estas se intersectam num mesmo ponto do infinito centro de perspectividade entre ABC e A'B'C') e para além deste e desses todos já referidos na entrada de Maio de 2009, procurámos ainda outro PQR ligado a ABC por uma perspectividade de centro F' (de IO): AP, BQ e CR fazem parte de um feixe de retas atado em F'...



e uma última construção em que pode deslocar as posições de A,B, C e verificar que os triângulos obtidos têm as mesmas circunferências circuncentricas e incentricas de [ABC],em que cada um deles tem vértice extremo do diâmetro sobre a reta IO e perspectivo com [ABC] (feixes de retas de centros F e F'(pontos de IO) sendo IO uma delas):


Edward Brisse; Perspective Poristic Triangles. Forum Geometricorum. Volume 1(2001) p. 9-16