Com o Princípio da Dualidade afirmamos que, na geometria projetiva do plano, qualquer definição se mantém com significado e cada teorema continua a ser verdadeiro, quando trocamos as palavras ponto por reta e reta por ponto (e consequentemente também certos pares de palavras tais como intersetam-se em e passam por, colinear e concorrente, vértice e lado, etc. Por exemplo, o dual do ponto AB.CD é a reta (a.b)(c.d) que explicita que simbolicamente não só trocamos maiúsculas por minúsculas como temos de remover pontos (com o significado de interseção) onde estão presentes ou de os inserir onde estão ausentes.
- triângulo como conjunto de 3 pontos A,B,C e de 3 retas AB, AC,BC e, dualmente, como conjunto de 3 retas a, b, c e dos 3 pontos a.b, a.c, b.c (figura autodual)
- quadrilátero completo como conjunto de 4 pontos A,B,C,D e de 6 retas AB,AC,AD,BC,BD,CD (com três pontos diagonais) e, dualmente, como conjunto de 4 retas a,b,c,d e 6 pontos a.b, a.c, a.d, b.c, b.d, c.d (com 3 retas diagonais).
- teorema de Desargues e seu recíproco (ou dual?)
Uma demonstração do teorema dual pode ser escrita automaticamente dualizando cada passo da demonstração do teorema original. No plano. (Há teoremas cuja demonstração não pode ser feita assim. A demonstração do recíproco do teorema de Desargues é um caso desses por ser tridimensional. Para evitar isso é que tomámos o Teorema de Desargues como axioma e deduzimos o seu recíproco no plano e sem apelar ao princípio da dualidade).
Este princípio da dualidade torna muito atrativa a Geometria Projetiva, pela simetria e, principalmente, pela economia. Ter demonstrado 10 teoremas significa afinal ter demonstrado 20
Sem comentários:
Enviar um comentário