11.3.12

Três triângulos perspetivos por um ponto O

Na construção a seguir, os triângulos verde, azul e vermelho são perspetivos por O. Os triângulos verde e azul são perspetivos por D1E1F1, os triângulos azul e vermelho são perspetivos por D2E2F2 e os triângulos verde e vermelho são perspetivos por D3E3F3.
Como pode observar-se, a figura sugere que as retas D1E1F1, D2E2F2 e D3E3F3 incidem num mesmo ponto K.




Para provar esse resultado, Coxeter dá a sugestão de aplicar o recíproco do terorema de Desargues aos triângulos D1D2D3 e E1E2E3.

Novo problema:
Coxeter pergunta o que acontece ao recíproco do Teorema de Desargues se o aplicarmos a triângulos cujos lados correspondentes se intersetam em pontos do infinito (paralelos)?

8.3.12

Teorema de Desargues e recíproco

Na entrada anterior e nesta, apresentamos uma construção dinâmica em que partimos de um feixe por O e de dois triângulos ABC e DEF em que cada um dos vértices está sobre uma reta do feixe e de tal modo que A→D, B→E e C→F, isto é AD∩BE∩CF={O}, isto é ABC é O-perspetivo DEF. Observámos que os pares de lados correspondentes (AB, DE) ou (c,f), (AC,DF) ou (b, e), (BC, EF) ou (a, d) se intersetam respetivamente nos pontos R, Q e P que são colineares ou pertencem todos à reta o, que é o mesmo que dizer que os triângulo abc e def são o-perspetivos. Os programas de geometria dinâmica podem verificar que o ponto R está sobre a reta PQ, assim como podem verificar que CF incide sobre o ponto de interseção de AD com BE.



De certo modo, podemos verificar que "Dados dois triângulos e uma correspondência biunívoca pela qual qual os pares de vértices correspondentes definem três retas que incidem num mesmo ponto O, então os pares de lados correspondentes pela mesma correspondência intersetam-se em pontos de uma mesma reta o", ou dito de outro modo, "Se dois triângulos são perspetivos por um ponto, então são perspetivos por uma mesma reta. Este resultado, conhecido por Teorema de Desargues, pode ser demonstrado, mas, mesmo para pares de triângulos do mesmo plano, precisa de um axioma novo e de usar um ponto exterior ao plano. Optamos, por isso e como fazem muitos autores, para o nosso estudo de geometria plana, tomar o chamado teorema de Desargues como um axioma.

Podemos demonstrar o recíproco (dual) do terorema de Desargues, a saber: Se dois triângulos são perspetivos por uma reta o, então são perspetivos por um ponto O. Tome-se da figura em que a.d=P, b.e=Q e d.f=R são pontos de o. E provamos, em consequência disso e do teor de Desargues, que as retas (a.b, d.e) ou CF, (a.c, d.f) ou BE, (b.c, e.f) ou AD se intersetam num ponto.
Recorremos aos triângulos ADQ e BEP. Estes triângulos são R-perspetivos, já que AB∩DE=DE∩QP=AB∩QP={R}. O teorema de Desargues aplicado a estes triângulos ADQ e BEP que são perspetivos por R, garante que AD∩BE={O}, AQ∩BP={C} e DQ∩EP={F} são colineares. Fica demonstrado que a reta CF passa por O, interseção de AD com BE.

6.3.12

Triângulos perspetivos

Duas pontuais ou dois feixes dizem-se perspetivos se estiverem relacionados por uma perspetividade. Esta noção pode ser ampliada para quasiquer duas figuras planas envolvendo mais do que um ponto ou mais que uma reta. Dois espécimes de uma figura dizem-se perspectivos se os os seus pontos podem ser relacionados por uma correspondência biunívoca tal que todos os pares de pontos corrrespondentes (ou homólogos) definem retas concorrentes ou se as suas retas podem ser relacionadas por uma correspondência biunívoca tal que todos os pares de retas correspondentes (ou homólogas) se intersetam em pontos colineares.
Considere os dois triângulos ABC e DEF da figura (BC=a, AC=b, AB=c; EF=d, DF=e, DE=f). E repare que AD.BE.CF=O e a.d,b.e, c.f estão sobre a reta o.

Assim os dois triângulos ABC e DEF da figura que se segue são perspetivos, quer porque A→D, B→E e C→F pela perspetividade relativa ao ponto O (as retas AD, BE e CF concorrem num só ponto O), ou porque a→d, b→e, c→f pela perspetividade relativa à reta o.

A O chamaremos centro e eixo a o.

2.3.12

Para escrever sobre quadriláteros (completos)

De forma semelhante à abordagem dos triângulos, usamos a palavra quadrilátero (ou quadrângulo) consagrada para designar
  1. o conjunto formado por quatro pontos {A,B,C,D}, dos quais não há 3 colineares, (vértices) e pelas 6 retas {AB,AC,AD,BC,BD,CD} definidas pelos pares de pontos existentes, a que chamamos lados. Dois lados consideram-se opostos quando se intersetam em pontos que não A, B, C, D, ou seja, em pontos que não são vértices, no caso, E,F,G. Esses 3 pontos tomam o nome de pontos diagonais

  2. o conjunto formado pelas quatro retas {a,b,c,d}, das quais não há 3 incidentes num ponto,(lados) e pelos 6 pontos {a.b,a.c,a.d,b.c,b.d,c.d} definidos pelos 6 pares de retas existentes a que chamamos vértices. Dois vértices consideram-se opostos quando definem uma reta que não é qualquer dos 4 lados a,b,c ou d, a saber, a.d e b.c, a.c e b.d, a.b e c.d. As retas definidas por vértices opostos chamam-se retas diagonais, no caso, e,f,g.
Para distinguir de outros conceitos associados à palavra quadrilátero, falamos de quadriláteros completos para evitar confusão. De um modo geral, em geometria projetiva só consideramos quadriláteros completos e é frequente falarmos de quadriláteros quando nos estamos a referir a quadriláteros completos.


Para escrever sobre triângulos

Escolhemos para base do estudo de geometria projetiva do plano, as noções primitivas de ponto, reta e incidência. O nosso plano foi definido como um conjunto de pontos {A,B,C,...} não vazio e uma família de subconjuntos {a,b,c, ..} não vazia a que chamámos retas. Considerámos a existência de uma reta a e um ponto A não incidente em a, e, assim, podemos sempre considerar o nosso mundo plano composto por todos os pontos que incidem nas retas definidas pelo ponto A e por cada ponto da reta a, bem como por todas as retas que possam ser definidas por quaisquer pares de pontos assim determinados.
E, a partir de agora, falaremos de triângulos (com recurso a palavra já consagrada pelo uso) como um conjunto de três pontos {A, B, C} não colineares (que não incidem todos numa só reta), a que chamamos vértices e das três retas {AB, BC, AC}, a que chamamos lados, determinadas pelos 3 pares de pontos existentes. Que é exata(dual)mente o mesmo que considerar o conjunto de 3 retas {a, b, c} (lados) não incidentes num mesmo ponto e dos três pontos {a.b, b.c, a.c} (vértices) de incidência dos 3 pares de retas existentes. Escrevemos AB para designar a única reta que passa por (comum a) A e B e a.b para designar o ponto único de (comum a) duas retas concorrentes (a.b=a∩b).



29.2.12

Exercício interativo: projetividade entre feixes


28.2.12

Usando perspetividades para determinar projetividades entre pontuais: permutações

A construção seguinte parte de uma pontual ABC. Toma-se um ponto Q, exterior a ABC, e, por ele, o feixe QA,QB cortado por uma reta arbitrária por C que corta o feixe QA,QB em R e S. Ficamos com os feixes (AQ,AS,AC),(BR,BQ,BC). O ponto P de incidência comum a AS e BR define um novo feixe (PQ,PR,PS). O ponto D, colinear com ABC fica determinado univocamente por construção.
Esta construção é muito interessante para ver que compostas de diferentes perspetividades têm o mesmo efeito e serve ainda para resolver vários problemas de projetividades que definem permutações dos pontos das pontuais ABCD, ABC, etc



Por exemplo:
  1. o feixe RA,RB,RC corta ABC e APS e a perspetividade de centro R leva de A para A, B para P e C para S
    e o feixe QA,QB,QC corta APS e ABC e a perspetividade de centro Q leva de A para A, P para D e S para B,
    tendo a sua composta o efeito de levar de ABC para ADB.
    Podemos escrever
    ABC →R APS →Q ADB
  2. O mesmo efeito obteríamos se, tomássemos os feixes SA,SB,SC e respetivas secções ABC e AQR para a perspetividade de centro S e o feixe PA,PQ, PR e respetivas secções AQR e ADB
    ABC →S AQR →P ADB

  3. Para obter a permutação BAC de ABC, podemos tomar uma perspetividade de centro P, seguida de uma perspetividade de centro Q, abreviadamente
    ABC →P SRC →Q BAC

27.2.12

Pontual de 4 pontos: permutações por projetividade

Quaisquer quatro pontos colineares podem ser permutados em pares por projetividade

Nas construções que se seguem, tomam-se quatro pontos colineares (quaisquer) A,B, C, D. Vamos provar que existe uma projetividade tal que A→B e B→A, C→D e D→C.

Sendo R um ponto não colinear com A,B,C,D, uma reta arbitrária incidindo em D corta o feixe RA, RB, RC na pontual T,Q, W. Sendo Z o ponto de incidência comum às retas AQ e RC, podemos concluir que
ABCD → BADC

Assim:

pela perspetividade de centro Q, (feixe verde, cortado por RZWC e ABCD):   ABCD →ZRCW,
seguida da perspetividade de centro A, (feixe azul cortado por RZWC e TQWD):    ZRCW → QTDW
e da perspetividade de centro R, (feixe castanho cortado por TQWD e ABCD):    QTDW→BADC.

Exercicios propostos por Coxeter:
  1. Dados 3 pontos colineares A, B, C, definir duas perspetividades cuja composta tenha o efeito A→B, B→A e C→C
  2. Dadas três retas concorrentes a, b, c, definir duas perspetividades cuja composta tenha o efeito abc →bac
  3. Dados três pontos colineares A,B,C e três retas concorrentes a,b,c definir cinco correspondências elementares (biunívocas) cuja composta tenha o efeito
    ABC→abc.
  4. Dados quatro pontos colineares A,B,C,D, determinar três perspetividades cuja composta tenha o efeito
    ABCD →DCBA

25.2.12

Exercício interativo:
Determinar a imagem de um ponto pela projetividade entre duas pontuais da mesma base


24.2.12

Projetividade entre duas pontuais com a mesma base

Consideremos as pontuais A, B , C e A', B', C',tendo por base a mesma reta. Vamos determinar a projetividade A→A', B→B', C→C', usando feixes de retas e pontuais como secções de feixes.
Comecemos por tomar um ponto V em que não incide a reta dos pontos A, B, C, A', B', C'. E consideremos o feixe VA', VB', VC'.
Tomamos a pontual A1, B1, C1 secção do feixe centrado em V por  s (auxiliar). Obviamente que A',B',C' e A1, B1, C1 são V-perspetivos.
Teremos agora de arranjar uma pontual A2, B2 , C2, que é secção comum aos feixes AA1, AB1, AC1 (por A)  e A1A, A1B, A1C (por A1), seguindo um processo já antes usado.


Assim:
- pela perspetividade centrada em A1,
A→A2, B→B2 ,C→C2;

- pela perspetividade centrada em A,
A2→A1, B2→B1, C2→C1;

- pela perspetividade centrada em V,
A1 →A', B1→B', C1→C'

Concluindo:
A→A', B→B', C→C'.

16.2.12

Outra forma de definir a projetividade entre duas pontuais

Nas últimas entradas, tratámos de determinar a projetividade entre duas pontuais ABC e DEF (ou entre dois feixes abc e def).
Para isso considerámos que A→D, B→E e C→F. Em seguida tomámos os feixes por A: AD, AE, AF e por D: DA,DB,DC. Traçámos a reta que incide nos pontos de interseção de AE com DB e AF com DC. Ficando assim definidas duas perpetividades entre as pontuais ABC e DEF para a secção comum dos feixes por A e por D.
A projetividade entre as pontuais ABC e DEF aparece como a composta das duas perspetividades. Note-se que essa projetividade não é uma perspetividade, já que AD,BE e CF não têm qualquer ponto em comum.
Na figura que se segue, não vamos tomar perspetividades centradas em A e D. Tomamos pontos quaisquer sobre BE (podia ser sobre AD ou sobre CF), a saber: O1 e O2 e os feixes O1A, O1B, O1C e O2D, O2E, O2F, definindo uma reta intermédia incidindo em I=O1A∩ O2D K=O1C∩O2F. Tomamos ainda J na interseção de O1O2 com a reta intermédia.
A projetividade fica definida A→I→D, B→J→E e C→K→F.
Obtivemos assim a projetividade como produto de duas perspetividades. Se mover os pontos O1 ou O2, verá que a projetividade se pode decompor em duas perspetividades de uma infinidade de modos.


14.2.12

Projetividade entre quaisquer dois feixes

Será que entre dois feixes a,b,c por R e d,e,f por S (quaisquer) se pode estabelecer uma correspondência biunívoca que seja uma projetividade?
Pode. Tomemos uma reta que corte a,b,c em A,B,C e outra que corte d,e,f em D,E,F. Usando o processo da anterior entrada (a castanho na figura), determina-se a projetividade entre as pontuais A,B,C e D,E,F como composta de duas perspetividades.
Temos
abc→ABC → DEF →def

Para cada reta x do feixe por R, há uma só reta do feixe por S que é projetiva com x (para a projetividade construída). Fica como exercício a sua determinação usando as ferramentas disponíveis. O computador reconhece a solução.

Fica assim provado que há uma projetividade que transforma o feixe abc noutro def. Ficará por provar que é única.
Será que há sempre uma projectividade entre dois feixes de 4 retas?

13.2.12

Projetividade entre quaisquer duas pontuais?

Será que entre duas pontuais A,B,C de r e D,E,F de s (quaisquer) se pode estabelecer uma correspondência biunívoca que seja uma projetividade?
Pode. Tomemos os feixes de retas AD, AE e AF (por A) e DA, DB e DC (por D) e a reta GH (=o) em que G=AE∩DB e H=AF∩DC. E tomemos I=AD∩GH. Ficam assim construidas duas perspetividades: uma que transforma a pontual A,B,C de r a pontual I,G,H de o (secções por r e o do feixe de retas incidentes em D) e outra que transforma a pontual I,G,H de o na pontual D,E,F de s (secções por o e s do feixe de retas incidentes em A).
A o chamamos eixo da projetividade que transforma a pontual A,B,C de r na pontual D,E,F de s. Escrevemos
ABC → IGH → DEF

Para cada ponto X de r, o correspondente em s, pela projetvidade assim definida, será o ponto X'' de incidência comum a AX' e s, em que X' é o ponto de incidência comuma a DX e o.

Fica assim provado que há sempre uma projetividade que transforma uma pontual ABC noutra DEF (determinada como composta de duas perspetividades). Ficará por provar que é única. Para isso, bastará verificar que qualquer sequência de perspetividades relacionando ABC com DEF terá sempre o mesmo efeito sobre X.
Será que há sempre uma projectividade entre duas pontuais de 4 pontos?

12.2.12

Perspetividades

Tomemos duas pontuais: A, B, C sobre uma reta r e D, E, F sobre outra reta s distinta de r. Claro que podemos estabelecer várias correspondências biunívocas entre os pontos das duas pontuais (ou fileiras). Há, no entanto, correspondências biunívocas especiais. Para exemplo, tomemos A→ D, B→E e C→F. Se as retas AD, BE e CF incidirem num mesmo ponto O, dizemos que as duas fileiras estão relacionadas por uma perspetividade com centro em O (são secções de um mesmo feixe por O) ou são perspetivas.



Dualmente, se tomarmos dois feixes de retas: a, b, c incidindo em R e d, e, f incidindo em S, há várias correspondências biunívocas entre as retas dos dois feixes. Para exemplo tomemos a→d, b→e, c→f. Se as interseções dos pares de retas correspondentes A=a∩d, B=b∩e, C=c∩f incidem numa mesma reta o, dizemos que os feixes estão em perspetividade de eixo o


2014
EUCLIDES
Instrumentos e métodos

de resolução de problemas de construção