14.2.16

Numa circunferência inscrever um triângulo retângulo


Problema:
São dados dois pontos $\;P,\;Q\;$ e uma circunferência $\;(O)\;$
Inscrever na circunferência $\;(O)\;$ um triângulo retângulo tal que a reta de um cateto passe $\;P\;$ e a reta do outro cateto passe por $\;Q.\;$

©geometrias. 14 fevereiro 2016, Criado com GeoGebra

Pode acompanhar a construção da resolução do problema fazendo variar os valores de n no seletor centrado e no fundo da janela de visualização.



Se um dos lados de um ângulo reto tem de passar por $\;P\;$ e outro por $\;Q\;$ então o seu vértice será um ponto da circunferência de diâmetro $\;PQ.\;$ Como o ângulo reto tem vértice sobre a circunferência $\;(O)\;$ este é um dos pontos da interseção das duas circunferências citadas - a que chamamos $\;A\;$. Os restantes vértices serão $\;B\;$ na interseção de $\;(O)\;$ com $\;AP\;$ e $\;C\;$ na interseção de $\;(O)\;$ com $\;AQ.\;$
No caso da nossa figura, o problema tem duas soluções.

148. Inscrire dans un cercle un triangle rectangle dont les cotês de l'angle droit ou leurs prolongements passent par deux points donnés P et Q
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

11.2.16

Circunferência por 2 pontos com tangentes iguais tiradas por 2 ponto distintos


Problema:
São dados quatro pontos $\;A,\;B,\;C,\;D.\;$
Construir a circunferência que passa por $\;A,\;B\;$ e cujas tangentes tiradas por $\;C\;$ e por $\;D\;$ têm o mesmo comprimento.

©geometrias. 10 fevereiro 2016, Criado com GeoGebra

Pode acompanhar a construção da resolução do problemas fazendo variar os valores de n no seletor centrado e no fundo da janela de visualização.



Este é mais um dos problemas que se resolve, analisando-o como se o tivessemos resolvido. Claro que, como temos dois pontos $\;A, \;B\;$ da circunferência-solução, sabemos que o seu centro $\;O\;$ é um ponto equidistante de $\;A\;$ e de $\;B\;$.
Também sabemos que $\;CH =DG\;$ se H for o ponto de tangência da tangente tirada por $\;C\;$ e $\;G\;$ for o ponto de tangência da tangente à circunferência tirada por $\;D\;$ e sabemos que $\;OG=OH\;$ (raios) e que $\;OG \perp GD\;$ e $\;OH \perp HC.\;$. E, em consequência, serão iguais os triângulos $\;[CHO]\;$ retângulo em $\;H\;$ e $\;[DGO]\;$ retângulo em $\;G\;$. Assim sendo, serão iguais as hipotenusas $\;OC = OD\;$. Ou seja $\;O\;$ é um ponto equidistante dos pontos dados, $\;C\;$ e $\;D\;$, da mediatriz de $\;CD\;$
Deste modo, $\;O\;$ fica determinado como interseção das mediatrizes de $\;AB\;$ e de $\;CD\;$ e a circunferência requerida tem este centro $\;O\;$ e passa por $\;A\;$

147. On donne quatre points A, B, C, D. Construire un cercle passant par A et B et tel que les tangentes issues de C et D soient égales.
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947 >