17.3.16

Construir um trapézio conhecendo comprimentos das bases e amplitudes dos ângulos adjacentes a uma delas.


Problema:
Construir um trapézio $\;[ABCD]\;$ de que conhecemos os comprimentos das suas bases $\;a=AB, \;c=CD\;$ e os ângulos adjacentes a uma das suas bases $\;\beta=A\hat{B} C, \; \alpha= B\hat{A}D.$

De um trapézio $\;[ABCD]\;$ de bases $\;AB, \;CD\;$ e $\; \angle B\hat{A}D = \alpha\;$ qualquer reta que faça um ângulo igual a esse $\;\alpha\;$ com a reta $\;AB\;$ é paralela a $\;AD.\;$


Pode seguir os passos da construção, fazendo variar o valor de $\;n\;$ no seletor ao fundo da janela.


@geometrias, 16 março 2016, Criado com GeoGebra



Para a determinação do vértice $\;C\;$ tomamos um ponto $\;E\;$ sobre $\;AB\;$ tal que seja $\;AE = CD. \;$
Tracemos o segundo lado de um ângulo de vértice em $\;E\;$ e primeiro lado $\;EB\;$. Sabemos que esse segunda lado é paralelo a $\;AD\;$ e, por isso, $\;C\;$ é um ponto desse segundo lado. Por outro lado, sabemos que está sobre o segundo lado do ângulo de vértice $\;B\;$ que faça um ângulo $\;\beta\;$ com o lado $\;BA\;$.
Tod o o problema de construção do trapézio em questão se resume pois a construir o triângulo de base $\;EB=a-c\;$ e ângulos adjacentes $\;\alpha, \; \beta\;$ cujo terceiro vértie é $\;C\;$
O quarto vértice $\;D\;$é a intersecção da paralela a $\;AB\;$ tirada por $\;C\;$ com a paralela a $\; EC\;$ tirada por $\;A.\; \;\;\;\;\;$ □

201. Construire un trapèze connaissant les deux bases et les angles adjacents à l'une de ces bases.l
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947

13.3.16

Construir um trapézio de que se conhecem os comprimentos dos lados


Problema:
Construir um trapézio de que conhecemos os comprimentos dos seus lados $\;a=AB, \;b=BC,\;c=CD,\;d=DA\;$ sendo as bases paralelas $\;AB,\;CD\;$

Sendo $\;AB\;$ e $\;CD\;$ as bases paralelas de um trapézio $\;ABCD, \;$ uma paralela tirada por $\;C\;$ a $\;DA\;$ corta $\;AB\;$ em $\;E\;$ digamos. Claro que $\;E\;$ está à distancia $\;AD=d\;$ de $\;C.\;$ e este pode ser determinado pela intersecção das circunferências (E, d) e (B,b). Como $\;AB\parallel CD\;$ e $\;CE\parallel DA, \; \;\;\; AE=CD=c\;$ e $\;BE=a-c.$


Pode seguir os passos da construção, fazendo variar o valor de $\;n\;$ no seletor ao fundo da janela.


@geometrias, 13 março 2016, Criado com GeoGebra


Tomando um ponto $\;A\;$ e uma reta $\;r\;$ quaisquer para suporte de $\;AB, \;$ determinamos $\, B:\; (A, a).r\;$ e $\;E: (A,c).r\;$
O problema de construção do trapézio fica resolvido determinando $\;C\;$ como
terceiro vértice do triângulo de lados $\;EB=a-c, \;b,\;d.\;$
O vértice $\;D\;$ é a intersecção da paralela a $\;EC\;$ tirada por $\;A\;$ com a paralela a $\;AB\;$ tirada por $\;C\;$ □

202. Construire un trapèze connaissant ses quatre côtés.l
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947