15.8.15

Relações entre os lados dos pentágono, decágono e hexágono inscritos numa mesma circunferência


Proposição 16:
Construir um iscosaedro inscritível numa dada esfera.


Passos da construção:
Seja $\;AB\;$ o diâmetro da esfera em que pretendemos inscrever um icosaedro.
  1. Começamos por dividir o diâmetro $\;AB\;$ em duas partes $\;AC\;$ e $\;CB\;$ de tal modo que $\;AC=4\times CB\;$ (VI.10). E seja o semicírculo $\;ADB\;$ de diâmetro $\;AB\;$ e tal que $\; A\hat{C}D\;$ seja reto. Tomamos $\;DB.\;$
  2. Depois tomemos uma circunferência de raio $\;DB\;$ e, sobre ela, os pontos $\;E,\;F,\;G, \; H, \;K\;$ como vértices de um pentágono equiângulo e equilátero (IV.11). E determinemos os pontos $\;L, \;M, \;N,\;O,\;P, \;$ médios, respetivamente, dos arcos dessa circunferência $\;EF, \;FG,\; GH,\; HK,\; KE.\;$ Como $\;EFGHK\;$ é um pentágno equilátero, também $\;LMNOP\;$ é um pentágono equilátero e $\;ELFMGNHOKP\;$ é um decágono inscrito na mesma circunferência e também equilátero.
  3. Tomemos agora as retas passando por $\;E,\;F,\;G, \; H, \;K\;$ fazendo ângulos retos com o plano da circunferência $\;EFGHK\;$ e destas tomemos os segmentos $\;EQ, \;FR, \;GS, \;HT,\;KU, \;$ de comprimento $\;DB\;$ igual ao raio da circunferência $\;EFGHK.\;$

    © geometrias. 25 de julho de 2015, Criado com GeoGebra

    Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)

    Tomemos os segmentos $\;QR,\; RS,\; ST,\; TU,\; UQ,\; QL,\; LR,\; RM,\; MS,\; SN,\; NT,\; TO,\;OU,\;$$ UP,\; PQ,\; $ limitando 10 triângulos.
    Como $\;EQ, \;FR, \;GS, \;HT,\;KU, \;$ fazem ângulos retos com um mesmo plano, elas são paralelas e complanares duas a duas (XI.6) e de de igual comprimento. E segmentos de reta compreendidos entre paralelas do mesmo lado e iguais são elas próprias iguais e paralelas (I.33). Assim, $\;QU\;$ é igual e paralela a $\;EK,\;$ ou seja, $\;EK\;$ tem comprimento igual ao lado do pentágono equilátero e equiângulo inscrito na circunferência $\;EFGHK.\;$ Por isso, o pentágono $\;QRSTU\;$ é equilátero. Por outro lado, como $\;QE\;$ é o comprimento do lado do hexágono equilátero inscrito na circunferência $\;EFGHK,\;$ por ser igual ao seu raio $\;DB, \;$ e $\;EP\;$ é lado do decágono inscrito na mesma circunferência, sendo $\;Q\hat{E}P\;$ reto então $\;QP\;$ é igual ao lado do pentágono equilátero inscrito na mesma circunferência, já que o quadrado do lado de um pentágono é igual à soma dos quadrados dos lados do hexágono e do decágono inscritos na mesma circunferência (XIII.10). Pelas mesmas razões $\;PU\;$ será igual ao lado do mesmo pentágono e assim será $\;QU\;$, ou seja $\;QPU\;$ é um triângulo equilátero.
    Por razões análogas, podemos concluir que os triângulos construídos $\;LRM, \; MSN,\; NTO,\; OUP.\;$ E, como $\;QL\;$ e $\;OP \;$, assim como $\;LP,\;$ também podem ser vistos como lados do pentágono, o triângulo $\;QLP\;$ é também equilátero. E, pelas mesmas razões, são equiláteros os triângulos $\;LRM,\; MSN, \; NTO,\; OUP.\;$
  4. Sobre a reta que passa pelos centros $\;I,\; J\;$ das circunferências $\;EFGHK\;$ e $\;QRSTU\;$ (que fazem ângulos retos com os respetivos planos) tomem-se (para fora da faixa dos triângulos construídos) segmentos iguais ao lado $\;EP\;$ do decágono inscrito na circunferência $\;EFGHK\;$ com extremos $\;I,\;V\;$ e $\;J,\;W.\;$ Como $\;IV\;$ é o lado do decágono e $\;IP\;$ é o lado do hexágono (raio), sendo $\;V\hat{I}P\;$ um ângulo reto, então $\;PV\;$ é o lado do pentágono. Do mesmo modo, se verifica que $\;LV = MV=NV=OV=PL\;$ são iguais entre si por serem iguais ao lado do pentágono regular inscrito em $\;(I, IP)\;$. E podemos concluir que são iguais entre si e equiláteros os triângulos $\;VLM, \;VMN, \;VNO, \;VOP, \;VPL,\;$ e iguais a $\;PQL, \ldots\;$
  5. De igual modo se provaria que são iguais aos anteriores os triângulos $\;WQR, \;WRS, \;WST, \;WTU, \;WUQ.\;$


  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements

23.7.15

Relações entre tetraedro e cubo inscritos numa mesma esfera.


As construções do tetraedro (XIII.13) e do cubo(XIII.15) começam exatamente do mesmo modo:
  1. o diâmetro $\;AB\;$ da esfera em que ambos se inscrevem é dividido por um ponto $\;C\;$ de tal modo que $\;AC=2CB;\;$
  2. sobre um semicírculo com esse diâmetro $\;AB\;$ que gera a esfera, tomámos um ponto $\;D\;$ tal que $\;CD\;$ é perpendicular a $\;AB;\;$
  3. para o tetraedro inscrito, a aresta é $\;AD ;\;$
  4. para o cubo inscrito na mesma esfera, a aresta é $\;DB.\;$
Em (XIII.13) vimos que $\;AB^2=\displaystyle \frac{3}{2}AD^2\;$ e, em (XIII.15), vimos que $\;AB^2=3DB^2\;$. Em consequência, de $\;\displaystyle \frac{3}{2}AD^2 = 3DB^2\;$ se retira que $\;AD^2=2DB^2,\;$ ou seja que $\;AD\;$ é o comprimento da diagonal de um quadrado de lado igual a $\;DB\;$. Assim vimos que a aresta de um tetraedro inscrito numa esfera de diâmetro dado tem comprimento igual à diagonal da face do cubo inscrito na mesma esfera.

© geometrias. 23 de julho de 2015, Criado com GeoGebra

Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)

Na construção que se segue, pode ver-se um cubo de 8 vértices $\;E, \;F, \;G, \;H, \;K, \;L,\; M, \;N\;$ extremos de 12 arestas $\;EF, \;FG, \;GH, \;EK, \;KL, \;LF, \;KN, \;NM, \;ML, \;GM, \;HN \;$ que limitam 6 faces quadradas $\;[EFGH], \;[EFLK], \;[KLMN], \;[MNHG], \;[FGML].$
Conforme a construção feita, 4 dos vértices do cubo - $\;E, \; G, \;L, \;N\;$ - são vértices do tetraedro, extremos das suas 6 arestas $\;EG, \;EL \;EN, \; GL, \;LN, \;NG,\;$ cada uma diagonal de uma face do cubo, que limitam as 4 faces triangulares do tetraedro $\;EGL, \;ELN, \;ENG, \;GLN.\;$
Claro que os outros 4 vértices do cubo $\;F,\;H,\;K,\; M\;$ também são vértices de um tetraedro, extremos de outras diagonais das faces do cubo.

Aproveitamos para comparar os volumes dos tetraedro e cubo inscritos numa mesma esfera. Se do cubo removermos o tetraedro, sobram-nos quatro pirâmides iguais: por exemplo, $\;EGHN, \; $ de base $\;GHN\;$ triangular, que é (por XII.9) a terça parte do prisma de bases $\;EFK\;$ e $\;HGN\;$ triangulares iguais. Por sua vez, é óbvio que este prisma é meio cubo, logo cada uma dessas pirâmides sobrantes após a remoção do tetraedro é a sexta parte do cubo, e o conjunto delas representa quatro sextas partes. Vimos assim que o tetraedro representa duas sextas partes ou a terça parte do cubo em termos de volume.

  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements