Loading web-font TeX/Main/Regular

29.4.14

Resolver problema de construção usando a translação

Problema:
Determinar um semento de reta igual e paralelo a um segmento de reta dado que cada um dos seus extremo esteja sobre cada uma de duas circunferências dadas.

A construção a seguir ilustra a resolução do problema.


© geometrias, 28 de Abril de 2014, Criado com GeoGebra


Clicando sobre o botão Resolução (direita ao fundo) pode ver a resolução.
  1. São dadas duas circunferências, (A) e (B), e um segmento UV.
  2. Na nossa resolução, escolhemos aplicar uma translação segundo o vetor \overrightarrow{UV} à circunferência (A). \begin{matrix} &{\cal{T}} _ \overrightarrow{UV}& & \\ (A)&\longrightarrow& (A') & \;\;\;\; \overrightarrow{AA'}=\overrightarrow{UV} \end{matrix}
  3. A circunferência (A') interseta (B) em dois pontos, designamo-los por K' e L' que são extremos dos segmentos KK' e LL', em que \begin{matrix} &{\cal{T}} _ \overrightarrow{UV}& &\\ (A)&\longrightarrow& (A') &\;\;\;\; \overrightarrow{AA'}=\overrightarrow{UV}\\ K&\longmapsto&K'&\;\;\;\; K\in (A)\; \wedge \;K'\in (A').(B)\; \wedge \; \overrightarrow{KK'}=\overrightarrow{UV}\\ L&\longmapsto&L'&\;\;\;\; L\in (A)\; \wedge \; L'\in (A').(B)\; \wedge\; \overrightarrow{LL'}=\overrightarrow{UV} \end{matrix}
  4. Os segmentos KK' e LL' são soluções do problema

Sem comentários: