determinação da(s) circunferência(s) tangente(s) a duas circunferências dadas e passa(m) por um ponto dado.
Como se pode ver, pelo caso apresentado, recorrer à inversão torna tudo mais fácil. Se eu quero uma circunferência tangente a outras duas, bastar-me-á passar às imagens por alguma inversão dessas circunferências e qualquer das retas tangentes comuns às duas circunferências imagens será correspondente, pela mesma inversão, a uma circunferência tangente às duas circunferências dadas.Se quero que essa circunferência passe por um dado ponto P, basta-me tomar a circunferência de inversão centrada em P.
- São dados P e circunferências de centros A e B.
- Começo por tomar uma circunferência auxiliar centrada em P e, por comodidade, a cortar as duas circunferências originalmente dadas. Se assim fizermos, as imagens por inversão dessas circunferências serão circunferências definidas, para cada uma, por dois pontos de intersecção com a circunferência auxiliar e pelo centro A ou pelo centro B.
- Definidas essas circunferências (imagens), basta-nos tirar alguma tangente comum às duas. Lembramos que há 4 tangentes comuns às duas (duas interiores e duas exteriores). No caso da nossa construção, determinámos as duas tangentes exteriores.
- Pela inversão, que definimos inicialmente, a cada reta tangente às imagens das circunferências originalmente dadss corresponde uma circunferência a elas tangentes e a passar por P
Sem comentários:
Enviar um comentário