Se um triângulo $ABC$ tem os lados AB, BC, CA sobre os quais tomamos os pontos $X \in AB, Y \in BC, Z \in AC$. Se as retas AY, BZ e CX concorrem num ponto P, então $$\frac{AX}{XB}\times \frac{BY}{YC} \times \frac{CZ}{ZA} =1$$
Pode deslocar cada um dos vértices do triângulo e o ponto D
Pode deslocar livremente os pontos X sobre AB, Y sobre BC e Z sobre CA e verificar que valores toma o produto $$\frac{AX}{XB} \times \frac{BY}{YC} \times \frac{CZ}{ZA}$$ para as diversas posições desses pontos.
Fizémos a construção considerando um triângulo equilátero e uma transformação projetiva (no caso, uma homologia de centro e eixo conhecidos). Esperamos ainda que verifiquem que o produto daquelas razões simples de ternos de pontos colineares é preservado pela transformação projetiva.
Sabe-se que quando $AY, BZ$ e $CX$ são medianas de $ABC$ equilátero $AX=XB=BY=YC=CZ=ZA$ e obviamente $$\frac{AX}{XB}\times \frac{BY}{YC} \times \frac{CZ}{ZA}=1$$. Bastaria isto e a invariância preservada pelas transformações projetivas como prova projetiva do Teorema de Ceva.
Seguindo
Richter-Gebert. Perspectives on Projective Geometry - A guided tour through real and complex geometry. Springer-Verlag. Berlin: 2011
Sem comentários:
Enviar um comentário