15.4.18

Circunferência tangente a três outras circunferências


Um exemplo de síntese num problema de construção cujos passos são sugeridos pela análise do problema


Problema: Construir uma circunferência tangente a três circunferências dadas pelos seus centros e respetivos raios $\;(A,a), \;(B,b), \;(C, c)\;$

15 abril 2018, Criado com GeoGebra


Transcrevemos a seguir uma adaptação do excerto de metodologia para a resolução de problemas de
F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)-

Nota (45 de F.G-M.).Há problemas de construção geométrica para os quais basta o recurso a um só teorema para acedermos à solução. Mas para a maioria dos problemas, a resposta não depende de um só resultado já conhecido. E, por isso, para resolver um problema é necessário recorrer a uma sucessão de problemas mais simples. Já percorremos longos caminhos construtivos em que cada passo dado não é mais do que um apoio para o passo seguinte até termos conseguido a solução do problema originalmente proposto. Apresentamos a seguir um problema de construção que analisamos para descobrir a sequência de problemas que é necessário resolver por uma ordem que é a inversa da que vamos seguir quando apresentamos em síntese.


Problema 46: Construir uma circunferência tangente a três circunferências dadas pelos seus centros e respectivos raios $\;(A,a), \;(B,b), \;(C, c)\;$
F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- Problème
46. Décrire une circonférence tangente à trois circonférences données
$\;A, B, C\;$

Consideremos o problema resolvido, isto é, suponhamos que temos determinada uma circunferência $\;(D, d)\;$ que é tangente a cada uma das circunferências $\;(A, a),\; (B, b), \; (C, c)\;$ dadas pelos respectivos (centro, raio). Consideremos, por exemplo, que $\;(A, a)\;$ é a de menor raio das circunferências dadas: $\;a < b, \;a < c \;$

A distância entre centros de circunferências tangentes é igual à soma dos seus raios e, assim, $\;DA= d+a,\; DB=d+b,\; DC= d+c.\;$ Uma circunferência de centro em $\;D\;$ e raio $\;DA=d+a\;$ é tangente à circunferência de centro em $\;B\;$ e raio $\;DB-DA=d+b-(d+a)=b-a\;$ e também à circunferência de centro em $\;C\;$ e raio $\;DC-DA=d+c-(d+a)=c-a.\;$ Se existir, a circunferência $\;(D, AD)\:$ é tangente a $\;(B, b-a)\;$ e a $\;(C, c-a)\;$ e passa por $\;A.$
Consideremos a semelhança (homotetia) entre as circunferências $\;(B, b-a)\;$ e a $\;(C, c-a)\;$ e tiremos pelo centro $\;E\;$ da homotetia uma tangente $\;EFG\;$ comum às duas, sendo pontos de tangência $ \;F\;$ e $\;G,\;$ respetivamente de $ \;(B, b-a)\;$ e $\;(C, c-a).\;$

Por isso, podemos dizer que precisamos de resolver o seguinte
Problema 47: Construir uma circunferência que passa por um ponto $\;A\;$ e é tangente a duas circunferências dadas $\;(B,b-a),\; (C, c-a)\;$


F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- Problème
47. Décrire une circonférence qui passe par un point $\;A\;$ et qui soit tangente à deux circonférences données
$\;(B, F)\;$ et $\;(C, G)\;$

A reta $\;EA\;$ intersectará a circunferência $\;(D,d)\;$ num ponto $\;H\;$ tal que $\;EA.EH=EF.EG,\;$ potência de $\;E\;$ relativamente à circunferência $\;(FGH)\;$ ou seja um ponto da circunferência $\;(D,d)\;$ fica determinado na intersecção de $\;EF\;$ com $\;(FGA).\;$
E o nosso problema depende da resolução do

Problema 48: Construir uma circunferência que passa por dois pontos $\;A,\; H\;$ dados e é tangente a uma das circunferências $\;(B, b-a)\;$ ou $\;(C, c-a)\;$ que se resume a construir uma circunferência que passe por três pontos dados $\;F,\;G, \;A.$


F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- Problème
48. Décrire une circonférence qui passe par deux points A, H donnés et qui soit tangente à une circonférence donnée

Ce troisième problème se ramène à ce quatrième : faire passer une circonférence par trois points donnés.

Nota (49a F.G.-M.) As indicações dadas são analíticas, desmontam o problema em vários, mas como cada resultado não é recíproco de nenhum dos outros, é preciso estudar cada um deles com cuidado, para não omitir alguma das soluções. Atente-se:
  1. Há uma só circunferência a passar por três pontos não colineares.
  2. Há duas circunferência a passar por dois pontos e tangente a uma outra circunferência.
  3. Há quatro circunferências a passar por um ponto e tangente a duas outras circunferências
  4. Há oito circunferências tangentes a três outras circunferências.
O método sintético expõe em primeiro lugar o problema mais simples que é o quarto e logo depois o terceiro, o segundo, e finalmente o problema geral, caminho inverso do seguido no método da exposição analítica percorrido, provavelmente seguido por François Viète e, como exemplo de simplificações sucessivas, apresentado por Georges RITT no seu Problèmes de Géometrie.

31.3.18

Pontos médios dos lados, pés das alturas, equidistantes do ortocentro e de ponto da circunscrita do triângulo são co-cíclicos.



TEOREMA:[Círculo dos nove pontos.]

Num triângulo, os pontos médios dos lados, os pés das alturas e os pontos médios dos segmentos de reta que ligam os vértices ao ortocentro são pontos de uma mesma circunferência (são concíclicos)


F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)-
Théorème 27. Cercle de» neuf point. Dans un triangle, les milieux des côtés, les pieds des hauteurs et les milieux des droites qui joignent les sommets au point de concours des hauteurs, sont situés sur une même circonférence.

Para acompanhar os passos, desloque o cursor |n=1,…, 4| na esquerda alta da janela de construção.

  1. São dados o triângulo $\;[ABC],\;$ de lados $\;a = [BC], \;$ $b=[CA], \;$ e $\;c=[AB] \;$ os pontos $\;M_a, \;M_b, \; M_c\;$ médios dos seus lados e a circunferência única que passa por esses três pontos médios, não colineares.
  2. Mostramos as alturas $\;AH_a, \; BH_b, \;CH_c.\;$ Precisamos de provar que os pés das perpendiculares $\;H_a, H_b, \;H_c\;$ tiradas de cada vértice para o lado oposto são pontos da mesma circunferência $\;(M_aM_bM_c).\;$
    A nossa descrição para este passo da demonstração apoia-se na figura em que $\;A\;$ está para a esquerda de $\;M_a\;$


  3. 31 março 2018, Criado com GeoGebra

    Provar que um dos pés, por exemplo, $\; H_a,\;$ é um ponto daquela circunferência, pode reduzir-se a provar que o quadrilátero $\;[H_aM_aM_bM_c]\;$ é inscritível em $\;(M_aM_bM_c),\;$ ou seja, provar que $$\; \angle M_a\widehat{M_b}M_c +\angle M_c\widehat{H_a}M_a = 1\;\; \mbox{raso}$$

    $\;ACBH_a\;$ é um triângulo retângulo em $\;H_a\;$ e $\;M_c\;$ é o ponto médio da sua hipotenusa $\;AB\;$ o que implica que $\;AM_cH_a\;$ é um triângulo isósceles de base $\;AH_a\;$ e $\;M_cA= M_cB =M_cH_a = M_aM_b\;$ já que $\;M_aM_b\;$ e $\;M_cB\;$ são segmentos paralelos entre paralelas ($\;M_bM_c \parallel BC\;$).
    Podemos assim concluir que o quadrilátero $\; [H_aM_aM_bM_c]\;$ é um trapézio isósceles, portanto inscritível e, assim, o quarto vértice $\;H_a\;$ estará obrigatoriamente na única circunferência que passa pelos outros três.
    Para um dos outros pés das alturas restantes, o mesmo raciocínio dará a prova.

  4. Mostra-se o ponto $\;H\;$ comum às alturas e os pontos $\;E_A, \;E_B, \;E_C\;$ equidistantes de $\;H\;$ e de $\;A, \;B, \;C\;$ respetivamente. que também pertencem a $\;(M_aM_bM_c),\;$ o que é preciso provar.

    A nossa descrição para este passo da demonstração apoia-se na figura em que $\;A\;$ está para a direita de $\;M_a\;$

    O segmento de reta $\;M_cE_A\;$ une pontos médios dos lados $\;AB\;$ e $\;AH\;$ do triângulo $\;[ABH]\; $e, por isso, $\;M_cE_A \parallel BH.\;$ Como $\;M_cM_a\;$ une pontos médios dos lados $\;AB\;$ e $\;BC, \;$, é $\;M_cM_a \parallel CA.\;$ Como $\;BH\;$ é um segmento da altura perpendicular a $\;CA\;$ é também perpendicular a $\;M_cM_a.\;$ Concluindo: $$\;(BH \parallel M_cE_A \wedge M_cM_a \perp CH) \Longrightarrow M_cM_a \perp M_cE_A$$ $$ \angle E_A\widehat{M_c}M_a= \angle B\widehat{H_a}A = 1\;\; \mbox{reto}$$ sendo estes ângulos opostos e de soma rasa no quadrilátero $\;[M_aH_aE_AM_c]\;$ e, por isso, $\;E_A\;$ é um ponto da circunferência $\;(M_aH_aMc)\;$ que tínhamos visto que era a mesma que $\;(M_aM_bM_c)\;$.
    O mesmo raciocínio se usa para provar que $\;E_B, \;E_C\;$ são pontos da mesma circunferência. $\;\;\;\;\;\blacksquare$



  5. Apresentamos aqui um ponto $\;P\;$ da circunferência $\;(ABC)\;$ circunscrita ao triângulo $\;[ABC]\;$ e o ponto $\;F\;$ médio do segmento $\;[HP].\;$ Deslocando o ponto $\;P\;$ sobre $\;(ABC)\;$ verá que o ponto $\;F\;$ (de Feuerbach, assim falamos dele) percorre a circunferência dos nove pontos $\; (M_aM_bM_cH_aH_bH_cE_AE_BE_C)\;$ e que estes nove pontos têm a propriedade comum de serem pontos - $\;F\;$ - equidistantes do ortocentro e de um ponto da circunferência circunscrita do triângulo $\;[ABC],\;$ havendo para além deles uma infinidade de pontos com essa propriedade.

E lembramos a nossa primeira publicação desse resultado.
Circunferência dos 9 pontos de um triângulo como lugar geométrico dos pontos médios dos segmentos com extremos no ortocentro e em ponto livre na circunferência circunscrita (Paul Yu )