14.2.18

Reta de Simson: caso de colinearidade das projeções de um ponto sobre três retas



TEOREMA DE SIMSON: Se de um ponto tomado sobre a circunferência circunscrita a um triângulo baixarmos perpendiculares a cada lado do triângulo, os pontos assim obtidos estão em linha reta
PROBLEMA: Demonstrar que são colineares os pés das perpendiculares aos lados de um triângulo tiradas de qualquer ponto da circunferência circunscrita

F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- Théorème de Simson. 22. Si d'un point pris sur la circonférence circonscrite à un triangle, on abaisse des perpendiculaires sur chaque côté du triangle, les trois points ainsi obtenus sont en ligne droite.
Ce théorème s'énonce quelque fois comme il suit:
Les projections d'un point quelconque de la circonférence circonscrite à un triangle, sur chaque côté de ce triangle, sont en ligne droite.



$\;\fbox{n=1}:\;$ Apresentam-se um triângulo $\;[ABC],\;$ a circunferência $\;(ABC)\;$ e um ponto $\;P\;$ nelaa
$\;\fbox{n=2}:\;$ As perpendiculares tiradas por $\;P\;$ a cada uma das retas $\;BC, \;CA, \; AB\;$ do trilátero $\;ABC,\;$ determinam os respetivos pés $\;D, \;E, \;F.\;$
$\;\fbox{n=3}:\;$ E, para a posição de $\;D, \;E, \;F\;$ da nossa figura inicial,ficam determinados dois quadriláteros convexos $\;[FAEP],\;[PCDE]\;$ que são inscritíveis, porque
  • o primeiro tem ângulos retos opostos, obviamente de soma rasa - $\;P\hat{E}A, \;A\hat{F}P;\;$ e
  • o segundo tem dois triângulos retângulos com a mesma hipotenusa $\;PC:\;\; [CDP], \;[PEC], \;]$ que é o diâmetro da comum circunscrita aos dois triângulos retângulos, i.e, a passar pelos pontos $\;P, \;C, \;D, \;E.\;$

Para outras posições de $\;P\;$ sobre a circunferência $\;(ABC),\;$ teremos naturalmente de considerar outros quadriláteros, mas serão análogos os raciocínios a fazer para provar que os pontos $\;D,\;E, \;F\;$ são colineares.


13 fevereiro 2018, Criado com GeoGebra



Fixemo-nos no caso da nossa figura inicial, em que $\;P\;$ está no arco $\;(CA)\;$ da circunferência $\;(ABC);\;$ e $\;D \in [BC], \;E \in [AC], \; F \in \dot{B}A \setminus [BA].\;$
Nestas condições, podemos dizer que $\;D, E, F\;$ são colineares se e só se $\;D\hat{E}C = F\hat{E}A, \;$ já que, como o vértice $\;E\;$ é ponto de uma reta $\;AC\;$ dada, aqueles ângulos só são iguais se forem verticalmente opostos, i.e. os segundos lados estiverem sobre uma mesma reta.
Finalmente
  • Sabemos que $\;\angle P\hat{A}F\;$ é suplementar de $\;\angle B\hat{A}P\;$, já que $\;D\;$ é um ponto da reta $\;BA;\;$
  • e também são suplementares os ângulos $\;\angle B\hat{A}P\;$ e $\;\angle P\hat{C}B\;;$ opostos no quadrilátero $\;[PABC]\;$ inscrito na circunferência $\;(ABC)\;$
  • em consequência, $\;\angle P\hat{A}F =\angle P\hat{C}B.\;$
  • Como $\;\angle P\hat{A}F\;$ (ou $\;\angle P\hat{C}B\;$ ) é complementar de $\;\angle F\hat{P}A\;$ e $\;\angle P\hat{C}D\;$ (ou $\;\angle P\hat{C}B\;$) é complementar de $\;\angle D\hat{P}C\;$ podemos concluir que $\;\angle D\hat{P}C= \angle F\hat{P}A\;$
  • Considerando a circunferência $\;(PFAE)\; $ os lados dos ângulos $\;\angle F\hat{P}A\;$ e $\;\angle F\hat{E}A\;$ compreendem o mesmo arco $\; \widehat{FA}\;$ dessa circunferência, o que nos permite concluir que $\;\angle F\hat{P}A = \angle F\hat{E}A\;$
  • e do mesmo modo, concluímos que são iguais os ângulos inscritos no mesmo arco $\;\widehat{CD}\;$ da circunferência $\;(CDEP):\;\;\; \angle C\hat{E}D =\angle C\hat{P}D\;$
  • Resumindo e concluindo $$\; \left(\angle D\hat{P}C= \angle F\hat{P}A\; \wedge \;\angle F\hat{P}A = \angle F\hat{E}A\; \wedge \;\angle C\hat{E}D =\angle C\hat{P}D \right) \Rightarrow \angle F\hat{E}A = \angle C\hat{E}D, \;$$ ou seja os pontos $\;D, \;E,\;F\;$ estão sobre uma mesma reta □
$\;\fbox{n=4}:\;$ Apresenta-se a reta onde incidem os pés das perpendiculares sobre cada um dos lados de triângulo tiradas por um ponto $\;P\;$ da circunferência circunscrita ao triângulo. A cada posição do ponto $\;P\;$ na circunferência corresponderá uma reta a que chamamos reta de Simson (ou de Wallace?)

7.2.18

Ponto de Miquel determinado por quatro retas distintas que se intersectam duas a duas.



TEOREMA: Quatro retas, concorrentes duas a duas,formam quatro triângulos; as circunferências circunscritas a estes quatro triângulos passam por um mesmo ponto
PROBLEMA: Demonstrar que o ponto de intersecção de quaisquer duas das circunferências circunscritas é ponto de qualquer outra das circunferências


F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, - Théorème de Miquel. 21. Quatre droites, se coupant deux à deux, forment quatre triangles ; les circonférences circonscrites à ces quatre triangles passent par un même point.



$\;\fbox{n=1}:\;$ Apresentam-se quatro retas $\;a,\;b,\;c,\;d\;$ que se intersectam duas a duas: $\;a.b={E},\;a.c={D}, \; a.d={B},\; b.c={A}, \;b.d={C}, \;c.d={F}$
$\;\fbox{n=2}:\;$ Estes pontos são, combinados três a três, vértices de quatro triângulos, a saber: $\;[FCA], \; [ADE], \;[ECB], \;[BDF]$
$\;\fbox{n=3}:\;$ Como sabemos, há uma circunferência a passar por cada terno de pontos não colineares, por exemplo, as circunferências $\;(FCA), \;(ADE)\;$ circunscritas aos respetivos triângulos $\;[FCA], \;[ADE]\;$ intersectam-se em dois pontos, sendo o primeiro deles $\;A\;$ e um segundo que designaremos por ponto $\;M,\;$ de Miquel, matemático catalão.
Assim a circunferência $\;(FCA)\;$ passa por $\;M\;$ e, por isso, circunscreve o quadrilátero $\;[FMCA],\;$ e, como sabemos, os ângulos opostos de um quadrilátero inscrito são suplementares: $\;\angle A\hat{F}M + \angle M\hat{C}A = 1 \;\;\mbox{raso}\;\; = \angle F\hat{M}C + \angle C\hat{A}F\;$
O quadrilátero $\;[ADME]\;$ está inscrito em $\;(ADE)\;$ e, por isso, $\;\angle A\hat{D}M + \angle M\hat{E}A = 1\;\;\mbox{raso}\;\; = \angle E\hat{A}D + \angle D\hat{M}E.\;$
Nota: É condição necessária e suficiente para que um quadrilátero seja inscritível numa circunferência ou tenha os seus quatro vértices a incidir numa circunferência que qualquer dos seus quatro ângulos seja suplementar do seu oposto.



7 fevereiro 2018, Criado com GeoGebra



$\;\fbox{n=4}:\;$ Para provar que $\;M\;$ incide na circunferência $\;(ECB)\;$ circunscrita ao triângulo $\; [ECB]\;$ basta provar que $\;[ECBM]\;$ é inscritível nela ou seja que $\;ECB + BME = CBM+MEC = 1\;\;$ raso.
Na circunferência $\;(FMCA)\;$ em que $\;M\;$ incide, inscrevem-se ângulos iguais $\;M\hat{A}F = M\hat{C}F=M\hat{C}B\;$ cuja amplitude é metade do arco $\;\widehat{FM}\;$ da circunferência compreendido entre os seus lados.
Claro que $\;M\hat{E}D = M\hat{E}B = M\hat{A}D\;$ já que compreendem entre os seus lados o mesmo arco $\;\widehat{DM}\;$ da circunferência $\;ADME\;$ ($\;M\;$ foi determinado como ponto da intersecção $\;(ADE).(FCA)\;$)
$\;M\hat{C}B=M\hat{C}F=M\hat{A}F=M\hat{E}B\;$
$\;M\hat{C}B=M\hat{E}B\;$ são ângulos inscritos em $\;(ECB)\;$ sendo $\;M\;$ o ponto comum a lados (um de cada um dos ângulos iguais) ou seja incidindo em $\;(BCE)\;$ ou de intersecção da diagonal $\;CM\;$ com os lados $\;BM, \;ME\;$ do quadrilátero $\;[ECBM]\;$ De facto, a verificação desta condição é suficiente para garantir que os ângulos opostos do quadrilátero $\;[BMEC]\;$ são suplementares.
A prova de que $\;M\;$ também é um ponto da circunferência $\;(BDF)\;$ é inteiramente análoga.

Nota: Há várias entradas no "bloGeometrias"" sobre quadriláteros inscritíveis em circunferências e com referências ao ponto de Miquel. O nosso interesse em fazer esta nova ilustração dinâmica só pretende chamar a atenção para a demonstração presente no volume de Exercícios de Geometria por FG-M (acima referido) que pode ser consultado em
http://gallica.fr (bnf)
que merece ser visitada (também pelos professores de matemática básica).