7.2.18

Ponto de Miquel determinado por quatro retas distintas que se intersectam duas a duas.



TEOREMA: Quatro retas, concorrentes duas a duas,formam quatro triângulos; as circunferências circunscritas a estes quatro triângulos passam por um mesmo ponto
PROBLEMA: Demonstrar que o ponto de intersecção de quaisquer duas das circunferências circunscritas é ponto de qualquer outra das circunferências


F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, - Théorème de Miquel. 21. Quatre droites, se coupant deux à deux, forment quatre triangles ; les circonférences circonscrites à ces quatre triangles passent par un même point.



$\;\fbox{n=1}:\;$ Apresentam-se quatro retas $\;a,\;b,\;c,\;d\;$ que se intersectam duas a duas: $\;a.b={E},\;a.c={D}, \; a.d={B},\; b.c={A}, \;b.d={C}, \;c.d={F}$
$\;\fbox{n=2}:\;$ Estes pontos são, combinados três a três, vértices de quatro triângulos, a saber: $\;[FCA], \; [ADE], \;[ECB], \;[BDF]$
$\;\fbox{n=3}:\;$ Como sabemos, há uma circunferência a passar por cada terno de pontos não colineares, por exemplo, as circunferências $\;(FCA), \;(ADE)\;$ circunscritas aos respetivos triângulos $\;[FCA], \;[ADE]\;$ intersectam-se em dois pontos, sendo o primeiro deles $\;A\;$ e um segundo que designaremos por ponto $\;M,\;$ de Miquel, matemático catalão.
Assim a circunferência $\;(FCA)\;$ passa por $\;M\;$ e, por isso, circunscreve o quadrilátero $\;[FMCA],\;$ e, como sabemos, os ângulos opostos de um quadrilátero inscrito são suplementares: $\;\angle A\hat{F}M + \angle M\hat{C}A = 1 \;\;\mbox{raso}\;\; = \angle F\hat{M}C + \angle C\hat{A}F\;$
O quadrilátero $\;[ADME]\;$ está inscrito em $\;(ADE)\;$ e, por isso, $\;\angle A\hat{D}M + \angle M\hat{E}A = 1\;\;\mbox{raso}\;\; = \angle E\hat{A}D + \angle D\hat{M}E.\;$
Nota: É condição necessária e suficiente para que um quadrilátero seja inscritível numa circunferência ou tenha os seus quatro vértices a incidir numa circunferência que qualquer dos seus quatro ângulos seja suplementar do seu oposto.



7 fevereiro 2018, Criado com GeoGebra



$\;\fbox{n=4}:\;$ Para provar que $\;M\;$ incide na circunferência $\;(ECB)\;$ circunscrita ao triângulo $\; [ECB]\;$ basta provar que $\;[ECBM]\;$ é inscritível nela ou seja que $\;ECB + BME = CBM+MEC = 1\;\;$ raso.
Na circunferência $\;(FMCA)\;$ em que $\;M\;$ incide, inscrevem-se ângulos iguais $\;M\hat{A}F = M\hat{C}F=M\hat{C}B\;$ cuja amplitude é metade do arco $\;\widehat{FM}\;$ da circunferência compreendido entre os seus lados.
Claro que $\;M\hat{E}D = M\hat{E}B = M\hat{A}D\;$ já que compreendem entre os seus lados o mesmo arco $\;\widehat{DM}\;$ da circunferência $\;ADME\;$ ($\;M\;$ foi determinado como ponto da intersecção $\;(ADE).(FCA)\;$)
$\;M\hat{C}B=M\hat{C}F=M\hat{A}F=M\hat{E}B\;$
$\;M\hat{C}B=M\hat{E}B\;$ são ângulos inscritos em $\;(ECB)\;$ sendo $\;M\;$ o ponto comum a lados (um de cada um dos ângulos iguais) ou seja incidindo em $\;(BCE)\;$ ou de intersecção da diagonal $\;CM\;$ com os lados $\;BM, \;ME\;$ do quadrilátero $\;[ECBM]\;$ De facto, a verificação desta condição é suficiente para garantir que os ângulos opostos do quadrilátero $\;[BMEC]\;$ são suplementares.
A prova de que $\;M\;$ também é um ponto da circunferência $\;(BDF)\;$ é inteiramente análoga.

Nota: Há várias entradas no "bloGeometrias"" sobre quadriláteros inscritíveis em circunferências e com referências ao ponto de Miquel. O nosso interesse em fazer esta nova ilustração dinâmica só pretende chamar a atenção para a demonstração presente no volume de Exercícios de Geometria por FG-M (acima referido) que pode ser consultado em
http://gallica.fr (bnf)
que merece ser visitada (também pelos professores de matemática básica).

Sem comentários: