7.7.15

Elementos: Construção de um cubo inscritível numa dada esfera


Proposição 15:
Construir um cubo que se possa inscrever-se numa esfera dada e mostrar que o quadrado do diâmetro da esfera é triplo do quadrado da aresta do cubo nela inscrito.

Construção:
  1. Seja $\;AB\;$ o diâmetro de uma dada esfera (ou seja a esfera gerada pela revolução de um semicírculo em torno do seu diâmetro de comprimento $\;AB\;$)
  2. Dividimos $\;AB\;$ em dois segmentos $\;AC\;$ e $\;CB\;$ tais que $\;AC=2CB\;$
  3. Tiremos por $\;C\;$ uma perpendicular a $\;AB\;$ e, no mesmo plano, tomemos $\;D ,\;$ ponto de interseção dessa perpendicular com a semicircunferência de diâmetro $\;AB\;$
  4. Tracemos $\;CD\;$ e $\;DB.\;$ - $\;A\hat{C}D=D\hat{C}B = 1\;$ reto
  5. Tomámos depois um ponto $\;E\;$ e, a partir dele, construímos um quadrado $\;EFGH\;$ de lado igual a $\;DB\;$.
  6. Em seguida, tirámos por $\;E, \;F,\; G,\;H\;$ perpendiculares ao plano do quadrado $\;EFGH\;$ e, sobre cada uma delas, tomámos um ponto de modo a obtermos $\;EK, \;FL,\; GM,\; HN\;$ iguais a um dos segmentos $\;EF, \; FG,\;GH,\;FE.\;$
  7. Finalmente, desenhámos $\;KL,\;LM,\; MN,\;NK.\;$
Obtivemos assim um cubo, limitado pelos seis quadrados iguais $\;EFGH, \;KLMN, \;EFLK,\;FGML,\;GMNH, \;NHKE.\;$

Temos agora de provar que esse cubo tem os vértices sobre uma esfera de diâmetro $\;AB\;$ e que o quadrado de lado igual ao diâmetro da esfera é triplo do quadrado de lado igual à aresta do cubo.

© geometrias. 1 de julho de 2015, Criado com GeoGebra

Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)

Demonstração:
  1. Tomamos $\;KG\;$ e $\;EG.\;$Por construção $\;KE\;$ é perpendicular ao plano $\;EFG\;$ e é por isso, perpendicular a $\;EG\;$ - $\;K\hat{E}G\;$ é reto - o que quer dizer que a semicircunferência de diâmetro $\;KG\;$ passa por $\;E.\;$
    Como $\;GF\;$ faz ângulos retos com cada uma das retas $\;FL\;$ e $\;FE\;$, então $\;GF\;$ também faz ângulos retos com o plano $\;KEF\;$ e, por isso, também é reto o ângulo $\;G\hat{F}K.\;$ E, portanto a semicircunferência de diâmetro $\;KG\;$ também passará por $\;F\;$ na sua rotação em torno de $\;KG.\;$
    Iguais raciocínios nos permitem concluir que essa semicircunferência rodando em torno de $\;KG\;$ passará por todos os vértices do cubo construído.
    Assim, mantendo fixo $\;KG\;$ a semicircunferência em revolução passa pelas mesmas posições desde que iniciou a rotação, o que quer dizer que o cubo está compreendido numa esfera de diâmetro $\;KG.\;$
    Será que está compreendido na esfera dada?
    1. Como $\;GF=FE\;$ e $\;G\hat{F}E\;$ é ângulo reto, então $\;GE^2 =FG^2+FE^2 = 2\times EF^2.\;$ Mas como $\;EF=EK\;$ então $\;EG^2=2\times EF2\;$ e como o ângulo $\;G\hat{E}K\;$ é reto, então $\;KG^2= GE^2+EK^2\;$. Podemos concluir que $\;GK^2=2EF^2+EF^2=3EF^2\;$
    2. Por terem ângulos iguais, cada um a cada um, os triângulos $\;ADB\;$ e $\;BCD\;$, sabemos que $$\frac{AB}{DB}=\frac{DB}{BC} \; \; \; \text{que é o mesmo que} \; \; \; DB^2=AB\times BC$$ e, como $$\;\displaystyle \frac{AB}{BC}= \frac{AB\times AB}{AB\times BC}\;$$ sendo, por construção, $$\;\displaystyle \frac{AB}{BC}=3 \;\; \text{e}\;\; \frac{AB}{BC}=\frac{AB^2}{BD^2} \;\; \text{então} \;\; AB^2=3\times DB^2$$ Na Geometria de Euclides, este resultado aqui apresentado a partir algebricamente já foi demonstrado antes por métodos geométricos....
    3. /ol> Fica assim provado que, por ser $\;EF=DB\;$ e $\;AB^2=3\times DB^2$ podemos concluir que $\;AB^2= GK^2\;$ e $\;AB=GK.$ Ou seja o cubo construído é inscritível numa esfera de diâmetro $\; AB\;$ dado.
              □


  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements

1.7.15

Livro XIII: Construção de um octaedro inscrito numa esfera dada


Proposição 14:
Construir um octaedro inscrito numa esfera dada e mostrar que o quadrado do diâmetro da esfera é o dobro do quadrado da aresta do octadedro nela inscrito.
Passos da construção:
  1. Tomámos um segmento $\;AB\;$ para eixo de um semicírculo gerador da esfera.
  2. Determinámos um ponto $\;C \;$ de $\;AB\;$ tal que $\;AC=CB\;$
  3. Assinalámos $\;D\;$ na interseção da perpendicular a $\;AB\;$ tirada por $\;C\;$ com o semicírculo de diâmetro $\;AB \;$. Traçámos o segmento de reta $\;DB\;$
  4. Prolongámos $\;CD\;$ e tomámos sobre essa a reta, a partir de $\;C\;$ em sentido oposto ao de $\;D,\;$ um segmento de comprimento igual $\;AB\;$ e uma circunferência com esse segmento para diâmetro.
  5. No caso da nossa construção, tomámos um ponto $\;E\;$ dessa circunferência e nela inscrevemos um polígono $\;EFGH\;$ tais que $\;EF = EG = FG=GH=DB\;$. Podíamos ter tomado um outro quadrado de lado igual a $\;DB\;$ em qualquer lugar do espaço. As opções tomadas só têm a ver com aspeto e tamanho da nossa construção.
  6. Sendo $\;K\;$ o centro da circunferência, tirámos uma perpendicular ao plano da circunferência $\;(EFGH)\;$ e sobre ela tomámos $\;L\;$ e $\;M,\;$ um de cada lado do plano de $\;(EFGH)\;$, tais que $\;KL=KM=KE=KF=KG=KH\;$
  7. Os 6 pontos $\;E,\;F,\;G,\;H,\;L,\;M\;$ serão vértices de um sólido de 8 faces triangulares $ \;LEF,\;LFG,\;LGH, \;LHE,\;MEF, \;MFG, \;MFH, \; MHE,\;$ que duas a duas se intersetam em alguma das 12 arestas $\;EF, \;FG, \;GH, \;HE, LE,\;LF,\;LG,\;LH,\;ME, \;MF,\;MG,\;MH.\;$ Traçamos tais arestas e faces.
Demonstraremos que o sólido construído é o octaedro requerido e que o quadrado do diâmetro da esfera é o dobro do quadrado da aresta do octaedro inscrito na esfera.

© geometrias. 1 de julho de 2015, Criado com GeoGebra

Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)

Demonstração:
  1. Por construção, $\;EFGH\;$ é um quadrado de lado igual a $\;DB.\;$E $\;EK=FK=GK=HK=KL=KM\;$ sendo iguais os ângulos $\;L\hat{K}E = M\hat{K}E = L\hat{K}F =M\hat{k}F = … = \;$1 reto. Por isso, $\;EK^2=LK^2, \; \; EL^2= 2\times EK^2. \;$ Do mesmo modo, $\;EH^2=2 \times EK^2\;$ e, por isso, $\;EL=EH\;$. Pelas mesmas razões, $\;LH = HE.\;$. Assim, podemos concluir que o triângulo $\;LEH\;$ é equilátero.
    Podemos concluir que são equiláteros todos os restantes triângulos cujas bases são os lados do quadrado $\;EFGH\;$ e o terceiro vértice opostos de cada base é $\;L\;$ ou $\;M\;$. Isto quer dizer que construímos um sólido cujas faces são triângulos equiláteros iguais, ou seja, é um octaedro o que construímos.
  2. Falta-nos provar que os vértices do octaedro construído são pontos da superfície esférica de diâmetro igual a $\;AB.\;$ Assim provamos a seguir:
    1. Por construção, $EF=FG=GH=HE=DB$ e, como vimos, os triângulos de bases $\;EFL, \;FGL, \;GHL, \;HEL, \: EFM, \;FGM, \;GHM, \;HEM, \: $ são equiláteros de lados iguais a $\;DB.\;$
    2. Como $\;LK, \;KM,\;KE\;$ são iguais, a semicircunferência desenhada de diâmetro $\;LM\;$ também passa por $\;E.\;$ E pela mesma razão, o semicírculo rodando em torno de $\;LM\;$ fixo também passa pelos pontos $ \;F, G, H\;$ e o octaedro terá os seus vértices numa esfera de diâmetro $\;LM.\;$
    3. E dado que $\;LK=KM\;$ e $\;KE\;$ comum nos triângulos $\;LKE\;$ e $\;MKE\;$ ambos retângulos em $\;\hat{K}\;$, $\;LE=EM\;$
    4. E como, por construção $\;L\hat{E}M\;$ é reto por estar inscrito num semicírculo de diâmetro $\;LM, \;$ então $\;LM^2= 2 \times LE^2\;$
    5. E como, por construção, o triângulo $\;ADB\;$ é retângulo em $\; \hat{D}\;$ (inscrito no semicírculo) e $\;AD=DB\;$ então $\;AB^2=AD^2+DB^2, \;$ de onde retiramos que $AB^2=2\times DB^2$
    6. Por ser, como vimos, $\;LE =DB\;$, podemos dizer que $\;AB^2=LM^2= 2 \times LE^2$, de onde se conclui:
      $\;AB=LM\;\;$ e $\;\;AB^2 = 2 \times LE^2$
    Fica assim provado que a semicircunferência de diâmetro $\;LM\;$ gera uma esfera (a passar pelos vértices do octaedro construído) congruente com esfera dada - gerada pela semicircunferência de diâmetro $\;AB.\;$
    e também ficou provado que o quadrado de lado igual ao diâmetro de uma esfera dada é igual ao quadrado de lado igual à aresta do octaedro nela inscrito.           □


  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements