1.5.14

Resolver problema de construção usando transformação de meia volta

Problema:    Num dado quadrilátero de vértices $\;A,\;B, \;C, \;D\;$ inscrever um paralelogramo de centro num ponto $\;O\;$ dado.

A construção a seguir ilustra a resolução do problema.


© geometrias, 1 de Maio de 2014, Criado com GeoGebra


Deslocando o cursor $\fbox{n=1, ..., 4}$  (direita ao fundo) pode ver os passos da resolução.
  1. São dados 5 pontos $\;A,\;B, \;C, \;D, \;O$
  2. Os quatro vértices $\;A,\;B, \;C, \;D \;$ definem quatro retas $\;AB=a, \;BC=b, \;CD=c, \;DA=d\;$. Assinalam-se os quatro segmentos dessas retas: $\;AB, \;BC, \;CD, \;DA\;$ lados.
  3. Na nossa resolução recorremos a uma meia volta de centro em $\;O$.  Por essa meia volta, cada uma das retas tem por correspondente uma reta paralela $\;a \parallel a', \; b\parallel b', ...\;$, sendo contrários os sentidos de $\,AB\;$ e $\;A'B'\;$, etc. segmentos assinalados a tracejado e com as cores dos seus correspondentes pela meia volta. $$\begin{matrix} & {\cal{R}}(O, 180^o) & & \\ a & \longrightarrow & a'&\;\;\; a\parallel a'\\ b & \longrightarrow & b'& \;\;\;b\parallel b'\\ c & \longrightarrow & c'& \;\;\;c\parallel c'\\ d & \longrightarrow & d'&\;\;\; d\parallel d'\\ a.b = B & \longmapsto & a'.b'=B' & \;\;\;O\in BB' \wedge BO=OB'\\ b.c = C & \longmapsto & b'.c'=C' &\;\;\; O\in CC'' \wedge CO=OC'\\ c.d = D & \longmapsto & c'.d'=D' &\;\;\; O\in DD' \wedge DO=OD'\\ d.a = A & \longmapsto & d'.a'=A' &\;\;\; O\in AA' \wedge AO=OA'\\ \end{matrix} $$
  4. Tomamos E=a.c' , F=b.d', G=a'.c, H=b'.d $$\begin{matrix} & {\cal{R}}(O, 180^o) & & \\ a & \longrightarrow & a'&\;\;\; a\parallel a'\\ b & \longrightarrow & b'& \;\;\;b\parallel b'\\ c & \longrightarrow & c'& \;\;\;c\parallel c'\\ d & \longrightarrow & d'&\;\;\; d\parallel d'\\ E= a'.c &\longmapsto& a.c'=G & \;\;\; O\in EG \wedge EO=OG\\ F= b.d' &\longmapsto& b'.d=H & \;\;\; O\in FH \wedge FO=OH\\ \end{matrix} $$ O quadrilátero $EFGH$ tem diagonais $EG$ e $FH$ que se intersetam e bissetam em $O$. É, por isso, um paralelogramo de centro $\;O\;$ inscrito no quadrilátero de vértices $\;ABCD$: $\;\;\;\;E\in a, \;F\in b, \;G \in c, \;H \in d$

30.4.14

Resolver problema de construção usando lugar geométrico e uma translação

Problema:
De uma dada posição $\;P\;$, observam-se dois pontos assinalados $\;A,\;B\;$ segundo um dado ângulo $\;B\hat{P}A=\alpha\;$ e, depois de percorrer uma dada distância numa dada direção $\;UV\;$, na posição $\;Q\;$ observam-se os pontos assinalados $\;A, \;B\;$ segundo um dado ãngulo $\;B\hat{Q}A= \beta\;$.
Determinar as posições $\;P, \;Q\;$ em que foram feitas as observações.

A construção a seguir ilustra a resolução do problema.


© geometrias, 29 de Abril de 2014, Criado com GeoGebra


Deslocando o cursor $\fbox{n=1, ..., 5}$  (direita ao fundo) pode ver os passos da resolução.
  1. São dados dois ângulos $\;\alpha, \;\beta\;$ e um segmento $\;UV\;$ ou $\;u\;$, e os dois pontos $\;A, \;B\;$ observados segundo os ângulos dados antes e depois de percorrer, numa direção paralela, uma distância igual a $\;UV\;$
  2. O lugar geométrico dos pontos $\;P$ tais que $\;B\hat{P}A = \alpha\;$ é constituído por 2 arcos (abertos) congruentes para os quais $\;AB\;$ é corda comum um em cada semi-plano dos determinado pela reta $AB$. Na nossa construção tomamos um dos semi-planos definidos por $\;AB\;$ e o arco a verde nesse semi-plano. Do mesmo modo, se determina e se escolhe o arco capaz do ângulo $\;B\hat{Q}A=\beta\;$, a castanho na figura.
  3. Na nossa resolução, usando o método da entrada anterior, aplicamos uma translação segundo o vetor $\overrightarrow{UV}$ ao arco verde $\;(O_1)$, obtendo um arco verde (a tracejado na figura).
    Esta arco interseta o arco castanho $\;(O_2)\;$ num ponto que designamos por $\;N_2$. É, por isso, um dos pontos $\;Q\;$, ou seja, $\;\angle B\hat{N_2}A = \beta$.
  4. O ponto $N_1$ a que corresponde $N_2$ pela translação $\;{\cal{T}}_{\overrightarrow{u}}\;$ tal que $\;N_1 N_2 =UV$ é um ponto do arco verde $\;(O_1)\;$ original, ou seja, $\;\angle B\hat{N_1}A =\alpha$.
  5. Os pontos $N_1$ e $N_2$ são posições de observação pedidas no problema como fica bem ilustrado com a marcação dos ângulos segundo os quais são vistos os pontos assinalados
Este problema é exemplo interessante por ser apresentado com enunciados diversos para vários contextos, propiciar estudo e discussão sobre existência de soluções e mobilizar lugares geométricos e transformações geométricas na sua resolução.