14.2.22

Propriedade? Conjectura ou Teorema?


Qualquer quadrilátero de vértices $\;A, \; B,\; C, D \;$ e lados $\;AB, \;BC, \;CD, \;DA \;$ divide-se em dois triângulos:
$\;\Delta[ABC]\;$ e $\; \Delta[CDA]\;$ pela diagonal $\;[AC]\;$
$\;\Delta[DAB]\;$ e $\;\Delta[BCD]\;$ pela diagonal $\;[BD]\;$.

Na construção, que apresentamos a seguir, temos o quadrilátero $\;[ABCD]\;$ inscrito na circunferência $\;(O,\;r)$, os incírculos dos triângulos $\;\Delta [ABC]\;$, $\;\Delta [CDA]\;$, $\;\Delta [DAB]\;$ e $\;\Delta [BCD]\;$ com os respectivos incentros $\;I_a$, $\;I_b$, $\;I_c\;$ e $\;I_d\;$ e os raios $\;r_a$, $\;r_b$, $\;r_c\;$ e $\;r_d$.
Pode deslocar qualquer dos pontos $\;A, \; B,\; C, D \;$ sobre a circunferência $\;(O,\;r)$ e verificar que se mantém a seguinte igualdade
$\; r_a + r_c\; = \; r_b + r_d\;$



Para apoiar o pensamento de uma demonstração ... via amigos das canárias ... uma construção dinâmica oferecida a interessados. Publicaremos um texto que nos enviem, também comentários,... Temos saudade do tempo (?) em que os nossos alunos nos descreviam as suas interpretações geométricas. Por onde andarão? os seus pensamentos.

Sem comentários: