7.2.18

Ponto de Miquel determinado por quatro retas distintas que se intersectam duas a duas.



TEOREMA: Quatro retas, concorrentes duas a duas,formam quatro triângulos; as circunferências circunscritas a estes quatro triângulos passam por um mesmo ponto
PROBLEMA: Demonstrar que o ponto de intersecção de quaisquer duas das circunferências circunscritas é ponto de qualquer outra das circunferências


F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, - Théorème de Miquel. 21. Quatre droites, se coupant deux à deux, forment quatre triangles ; les circonférences circonscrites à ces quatre triangles passent par un même point.



$\;\fbox{n=1}:\;$ Apresentam-se quatro retas $\;a,\;b,\;c,\;d\;$ que se intersectam duas a duas: $\;a.b={E},\;a.c={D}, \; a.d={B},\; b.c={A}, \;b.d={C}, \;c.d={F}$
$\;\fbox{n=2}:\;$ Estes pontos são, combinados três a três, vértices de quatro triângulos, a saber: $\;[FCA], \; [ADE], \;[ECB], \;[BDF]$
$\;\fbox{n=3}:\;$ Como sabemos, há uma circunferência a passar por cada terno de pontos não colineares, por exemplo, as circunferências $\;(FCA), \;(ADE)\;$ circunscritas aos respetivos triângulos $\;[FCA], \;[ADE]\;$ intersectam-se em dois pontos, sendo o primeiro deles $\;A\;$ e um segundo que designaremos por ponto $\;M,\;$ de Miquel, matemático catalão.
Assim a circunferência $\;(FCA)\;$ passa por $\;M\;$ e, por isso, circunscreve o quadrilátero $\;[FMCA],\;$ e, como sabemos, os ângulos opostos de um quadrilátero inscrito são suplementares: $\;\angle A\hat{F}M + \angle M\hat{C}A = 1 \;\;\mbox{raso}\;\; = \angle F\hat{M}C + \angle C\hat{A}F\;$
O quadrilátero $\;[ADME]\;$ está inscrito em $\;(ADE)\;$ e, por isso, $\;\angle A\hat{D}M + \angle M\hat{E}A = 1\;\;\mbox{raso}\;\; = \angle E\hat{A}D + \angle D\hat{M}E.\;$
Nota: É condição necessária e suficiente para que um quadrilátero seja inscritível numa circunferência ou tenha os seus quatro vértices a incidir numa circunferência que qualquer dos seus quatro ângulos seja suplementar do seu oposto.



7 fevereiro 2018, Criado com GeoGebra



$\;\fbox{n=4}:\;$ Para provar que $\;M\;$ incide na circunferência $\;(ECB)\;$ circunscrita ao triângulo $\; [ECB]\;$ basta provar que $\;[ECBM]\;$ é inscritível nela ou seja que $\;ECB + BME = CBM+MEC = 1\;\;$ raso.
Na circunferência $\;(FMCA)\;$ em que $\;M\;$ incide, inscrevem-se ângulos iguais $\;M\hat{A}F = M\hat{C}F=M\hat{C}B\;$ cuja amplitude é metade do arco $\;\widehat{FM}\;$ da circunferência compreendido entre os seus lados.
Claro que $\;M\hat{E}D = M\hat{E}B = M\hat{A}D\;$ já que compreendem entre os seus lados o mesmo arco $\;\widehat{DM}\;$ da circunferência $\;ADME\;$ ($\;M\;$ foi determinado como ponto da intersecção $\;(ADE).(FCA)\;$)
$\;M\hat{C}B=M\hat{C}F=M\hat{A}F=M\hat{E}B\;$
$\;M\hat{C}B=M\hat{E}B\;$ são ângulos inscritos em $\;(ECB)\;$ sendo $\;M\;$ o ponto comum a lados (um de cada um dos ângulos iguais) ou seja incidindo em $\;(BCE)\;$ ou de intersecção da diagonal $\;CM\;$ com os lados $\;BM, \;ME\;$ do quadrilátero $\;[ECBM]\;$ De facto, a verificação desta condição é suficiente para garantir que os ângulos opostos do quadrilátero $\;[BMEC]\;$ são suplementares.
A prova de que $\;M\;$ também é um ponto da circunferência $\;(BDF)\;$ é inteiramente análoga.

Nota: Há várias entradas no "bloGeometrias"" sobre quadriláteros inscritíveis em circunferências e com referências ao ponto de Miquel. O nosso interesse em fazer esta nova ilustração dinâmica só pretende chamar a atenção para a demonstração presente no volume de Exercícios de Geometria por FG-M (acima referido) que pode ser consultado em
http://gallica.fr (bnf)
que merece ser visitada (também pelos professores de matemática básica).

30.1.18

Triângulo isósceles: invariância da soma das distâncias do lados iguais a pontos da base.



TEOREMA: Se por um ponto qualquer $\;D,\;$ da base $\;BC\;$ de um triângulo $\;ABC\;$ isósceles, tirarmos perpendiculares $\;DE, \; DF\;$ respetivamente aos lados $\;AC\;$ e $\;AB\;$ iguais, então a soma $\;DE+DF\;$ é sempre a mesma qualquer que seja a posição de $\;D.\;.$
PROBLEMA: Provar que é invariante a soma das distâncias $\;DE+DF\;$ de um ponto qualquer $\;D\;$ de $\;BC\;$ aos lados $\;AC\;$ e $\;AB\;$ .


F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, - Problème 20. 20. La somme des perpendiculaires abaissées d'un point quelconque de la base d'un triangle isocèle sur les côtés égaux, quelconque est une quantité constante.

Todos os passos da construção e demonstração em tudo são análogos aos usados na anterior entrada

$\;\fbox{n=1}:\;$ Apresenta-se um triângulo isósceles $\;ABC\;$ de base $\;BC\;$ e sobre esta um ponto $\;D\;$ que pode tomar a posição de qualquer dos seus pontos. E mostram-se também os pontos $\;E, \;F\;$ pés das perpendiculares a $\;AC,\; AB\;$ por $\;D\;$ tiradas.Também se mostram os segmentos (distâncias do problema) das perpendiculares $\;[DE],\; [DF]$

$\;\fbox{n=2}:\;$ Para verificar a invariância da soma, bastará prolongar uma das perpendiculares, no caso da nossa construção prolongamos o segmento $\;[DF]\;$ acrescentando $\;[DN],\;$ em que $\;N\;$ é ponto de intersecção da recta $\;DF\;$ com uma paralela a $\;AC\;$ tirada por $\;C\;$ (ou o que é o mesmo com uma perpendiculara a $\;DF\;$ tirada por $\;C.$)
Ficamos assim com três triângulos retângulos semelhantes $\;DBF, \;CDN, \;DCE:\;$
  • $\; \angle F\hat{B}D = \angle D\hat{C}E\;$ ângulos da base do triângulo $\;ABC\;$ isósceles;
  • $\; \angle D\hat{F}B = \angle C\hat{E}D= 1\;$ reto, por construção (dados da hipótese);
  • e, em consequência, $\; \angle B\hat{D}F= \angle E\hat{D}C\;$;
  • $\;\angle N\hat{C}D= \angle F\hat{B}D \;$ por terem os lados inversamente paralelos;
  • e finalmente $\; \angle B\hat{D}F = \angle C\hat{D}N \;$ são iguais por serem verticalmente opostos.
  • Podemos agora afirmar que, mais do que semelhantes, são iguais os triângulos $\;CED, \;CDN\;$ por terem os três ângulos iguais e a hipotenusa $\;CD\;$ comum.
  • Por isso, $\;DE = DN\;$ e $\;FD+DN= FD+DE = FN\;$ que os valores referidos nos textos abaixo da construção sugerem que os diversos valores de $\;DE\;$ e $\;DF\;$ quando $\;D\;$ se desloca sobre a base $\;BC\;$ têm uma soma constante.




31 janeiro 2018, Criado com GeoGebra



$\;\fbox{n=3}:\;$ Apresenta-se neste passo o segmento $\;[CL]\;$ da paralela a $\;FN\;$ tirada por $\;C\;$ (ou da perpendicular a $\;AB\;$ tirada por $\;C\;$ que é uma das duas alturas iguais do triângulo $\;ABC\;$ tiradas pelos vértices opostos $\;C\;$ e $\;B\;$ opostos aos lados iguais $\;AB\;$ e $\;AC,\;$ que não sofre qualquer variação quando $\;D\;$ muda de posição e tem comprimento igual a $\;\overline{FN},\;$ ou seja, à soma das duas distâncias dos lados iguais do triângulo isósceles a cada ponto da base. Fica assim demonstrado que essa soma é constante.


Quando $\;D\;$ se encontra em $\;C\;$o retângulo $\;CLFN\;$ tem área $\; CL\times FF\;$ nula. Quando $\;D\;$ se encontra em $\;B\;$o retângulo $\;CLFN\;$ tem área $\; CL\times LB\;$ máxima

Quanto ao perímetro, como uma das dimensões do retângulo é sempre a mesma, o perimetro é um mínimo $\;CL\;$ quando $\;D\;$ toma a posição de $\;C\;$ e é máximo $\;2(CL+LB)\;$ quando $\;D\;$ toma a posição de $\;B\;$