TEOREMA: Se por um ponto qualquer $\;D,\;$ da base $\;BC\;$ de um triângulo $\;ABC\;$ isósceles, tirarmos perpendiculares $\;DE, \; DF\;$ respetivamente aos lados $\;AC\;$ e $\;AB\;$ iguais, então a soma $\;DE+DF\;$ é sempre a mesma qualquer que seja a posição de $\;D.\;.$
PROBLEMA: Provar que é invariante a soma das distâncias $\;DE+DF\;$ de um ponto qualquer $\;D\;$ de $\;BC\;$ aos lados $\;AC\;$ e $\;AB\;$ .
F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, - Problème 20. 20. La somme des perpendiculaires abaissées d'un point quelconque de la base d'un triangle isocèle sur les côtés égaux, quelconque est une quantité constante.
Todos os passos da construção e demonstração em tudo são análogos aos usados na anterior entrada
$\;\fbox{n=1}:\;$ Apresenta-se um triângulo isósceles $\;ABC\;$ de base $\;BC\;$ e sobre esta um ponto $\;D\;$ que pode tomar a posição de qualquer dos seus pontos. E mostram-se também os pontos $\;E, \;F\;$ pés das perpendiculares a $\;AC,\; AB\;$ por $\;D\;$ tiradas.Também se mostram os segmentos (distâncias do problema) das perpendiculares $\;[DE],\; [DF]$
$\;\fbox{n=2}:\;$ Para verificar a invariância da soma, bastará prolongar uma das perpendiculares, no caso da nossa construção prolongamos o segmento $\;[DF]\;$ acrescentando $\;[DN],\;$ em que $\;N\;$ é ponto de intersecção da recta $\;DF\;$ com uma paralela a $\;AC\;$ tirada por $\;C\;$ (ou o que é o mesmo com uma perpendiculara a $\;DF\;$ tirada por $\;C.$)
Ficamos assim com três triângulos retângulos semelhantes $\;DBF, \;CDN, \;DCE:\;$
- $\; \angle F\hat{B}D = \angle D\hat{C}E\;$ ângulos da base do triângulo $\;ABC\;$ isósceles;
- $\; \angle D\hat{F}B = \angle C\hat{E}D= 1\;$ reto, por construção (dados da hipótese);
- e, em consequência, $\; \angle B\hat{D}F= \angle E\hat{D}C\;$;
- $\;\angle N\hat{C}D= \angle F\hat{B}D \;$ por terem os lados inversamente paralelos;
- e finalmente $\; \angle B\hat{D}F = \angle C\hat{D}N \;$ são iguais por serem verticalmente opostos.
- Podemos agora afirmar que, mais do que semelhantes, são iguais os triângulos $\;CED, \;CDN\;$ por terem os três ângulos iguais e a hipotenusa $\;CD\;$ comum.
- Por isso, $\;DE = DN\;$ e $\;FD+DN= FD+DE = FN\;$ que os valores referidos nos textos abaixo da construção sugerem que os diversos valores de $\;DE\;$ e $\;DF\;$ quando $\;D\;$ se desloca sobre a base $\;BC\;$ têm uma soma constante.
31 janeiro 2018, Criado com GeoGebra
$\;\fbox{n=3}:\;$ Apresenta-se neste passo o segmento $\;[CL]\;$ da paralela a $\;FN\;$ tirada por $\;C\;$ (ou da perpendicular a $\;AB\;$ tirada por $\;C\;$ que é uma das duas alturas iguais do triângulo $\;ABC\;$ tiradas pelos vértices opostos $\;C\;$ e $\;B\;$ opostos aos lados iguais $\;AB\;$ e $\;AC,\;$ que não sofre qualquer variação quando $\;D\;$ muda de posição e tem comprimento igual a $\;\overline{FN},\;$ ou seja, à soma das duas distâncias dos lados iguais do triângulo isósceles a cada ponto da base. Fica assim demonstrado que essa soma é constante.
Quando $\;D\;$ se encontra em $\;C\;$o retângulo $\;CLFN\;$ tem área $\; CL\times FF\;$ nula. Quando $\;D\;$ se encontra em $\;B\;$o retângulo $\;CLFN\;$ tem área $\; CL\times LB\;$ máxima
Quanto ao perímetro, como uma das dimensões do retângulo é sempre a mesma, o perimetro é um mínimo $\;CL\;$ quando $\;D\;$ toma a posição de $\;C\;$ e é máximo $\;2(CL+LB)\;$ quando $\;D\;$ toma a posição de $\;B\;$