Mostrar mensagens com a etiqueta invariantes. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta invariantes. Mostrar todas as mensagens

30.1.18

Triângulo isósceles: invariância da soma das distâncias do lados iguais a pontos da base.



TEOREMA: Se por um ponto qualquer $\;D,\;$ da base $\;BC\;$ de um triângulo $\;ABC\;$ isósceles, tirarmos perpendiculares $\;DE, \; DF\;$ respetivamente aos lados $\;AC\;$ e $\;AB\;$ iguais, então a soma $\;DE+DF\;$ é sempre a mesma qualquer que seja a posição de $\;D.\;.$
PROBLEMA: Provar que é invariante a soma das distâncias $\;DE+DF\;$ de um ponto qualquer $\;D\;$ de $\;BC\;$ aos lados $\;AC\;$ e $\;AB\;$ .


F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, - Problème 20. 20. La somme des perpendiculaires abaissées d'un point quelconque de la base d'un triangle isocèle sur les côtés égaux, quelconque est une quantité constante.

Todos os passos da construção e demonstração em tudo são análogos aos usados na anterior entrada

$\;\fbox{n=1}:\;$ Apresenta-se um triângulo isósceles $\;ABC\;$ de base $\;BC\;$ e sobre esta um ponto $\;D\;$ que pode tomar a posição de qualquer dos seus pontos. E mostram-se também os pontos $\;E, \;F\;$ pés das perpendiculares a $\;AC,\; AB\;$ por $\;D\;$ tiradas.Também se mostram os segmentos (distâncias do problema) das perpendiculares $\;[DE],\; [DF]$

$\;\fbox{n=2}:\;$ Para verificar a invariância da soma, bastará prolongar uma das perpendiculares, no caso da nossa construção prolongamos o segmento $\;[DF]\;$ acrescentando $\;[DN],\;$ em que $\;N\;$ é ponto de intersecção da recta $\;DF\;$ com uma paralela a $\;AC\;$ tirada por $\;C\;$ (ou o que é o mesmo com uma perpendiculara a $\;DF\;$ tirada por $\;C.$)
Ficamos assim com três triângulos retângulos semelhantes $\;DBF, \;CDN, \;DCE:\;$
  • $\; \angle F\hat{B}D = \angle D\hat{C}E\;$ ângulos da base do triângulo $\;ABC\;$ isósceles;
  • $\; \angle D\hat{F}B = \angle C\hat{E}D= 1\;$ reto, por construção (dados da hipótese);
  • e, em consequência, $\; \angle B\hat{D}F= \angle E\hat{D}C\;$;
  • $\;\angle N\hat{C}D= \angle F\hat{B}D \;$ por terem os lados inversamente paralelos;
  • e finalmente $\; \angle B\hat{D}F = \angle C\hat{D}N \;$ são iguais por serem verticalmente opostos.
  • Podemos agora afirmar que, mais do que semelhantes, são iguais os triângulos $\;CED, \;CDN\;$ por terem os três ângulos iguais e a hipotenusa $\;CD\;$ comum.
  • Por isso, $\;DE = DN\;$ e $\;FD+DN= FD+DE = FN\;$ que os valores referidos nos textos abaixo da construção sugerem que os diversos valores de $\;DE\;$ e $\;DF\;$ quando $\;D\;$ se desloca sobre a base $\;BC\;$ têm uma soma constante.




31 janeiro 2018, Criado com GeoGebra



$\;\fbox{n=3}:\;$ Apresenta-se neste passo o segmento $\;[CL]\;$ da paralela a $\;FN\;$ tirada por $\;C\;$ (ou da perpendicular a $\;AB\;$ tirada por $\;C\;$ que é uma das duas alturas iguais do triângulo $\;ABC\;$ tiradas pelos vértices opostos $\;C\;$ e $\;B\;$ opostos aos lados iguais $\;AB\;$ e $\;AC,\;$ que não sofre qualquer variação quando $\;D\;$ muda de posição e tem comprimento igual a $\;\overline{FN},\;$ ou seja, à soma das duas distâncias dos lados iguais do triângulo isósceles a cada ponto da base. Fica assim demonstrado que essa soma é constante.


Quando $\;D\;$ se encontra em $\;C\;$o retângulo $\;CLFN\;$ tem área $\; CL\times FF\;$ nula. Quando $\;D\;$ se encontra em $\;B\;$o retângulo $\;CLFN\;$ tem área $\; CL\times LB\;$ máxima

Quanto ao perímetro, como uma das dimensões do retângulo é sempre a mesma, o perimetro é um mínimo $\;CL\;$ quando $\;D\;$ toma a posição de $\;C\;$ e é máximo $\;2(CL+LB)\;$ quando $\;D\;$ toma a posição de $\;B\;$

22.1.18

Paralelogramos inscritos num triângulo isósceles com um perímetro comum.



TEOREMA:Por um ponto qualquer $\;D,\;$ da base $\;BC\;$ de um triângulo $\;ABC\;$ isósceles, tiram-se paralelas aos lados iguais $\;AB, \;AC\,$ do triângulo que intersetam os lados $\;AC, \;AB \;$ em $\;E\;$ e em $\;F\;$ respetivamente. Para cada $\;D\;$ de $\;]BC[\;$ há um paralelogramo $\;[DEAF].\;$ Prova-se que os paralelogramos $\;[DEAF]:\;D \in ]BC[\;$ são isoperimétricos.
PROBLEMA: Provar que a soma dos comprimentos dos lados de todos os paralelogramos é invariante.


F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, - Problème 19. Par un point quelconque de la base d'un triangle isocèle on mène des parallèles aux côtés égaux; prouver qye le parallélogramme ainsi formé a un périmètre constant.

Considera-se que na resolução deste problema de demonstração se recorre ao método geral de análise já que se aceita que a afirmação é verdadeira, o que é o mesmo que supor ter o problema resolvido. Os primeiros três passos da construção abaixo dão toos os elementos para a demonstração do teorema.

$\;\fbox{n=1}:\;$ Apresenta-se um triângulo isósceles $\;ABC\;$ de base $\;BC\;$ e sobre esta um ponto $\;D\;$ que pode tomar a posição de qualquer dos seus pontos. E mostram-se também os pontos $\;E, \;F\;$ vértices do paralelogramo $\;DEAF\;$ conforme dados da hipótese do teorema.

$\;\fbox{n=2}:\;$ Claro que lados opostos do paralelogramo têm comprimento igual (segmentos paralelos entre paralelas são iguais) $\;AE=FD, \;AF=DE\;$ e, por isso, o perímetro de $\;DEAF\;$ é igual ao dobro da soma de dois dos seus lados consecutivos: $\;DE+EA+AF+FD= 2 (DE+FD). \;$ Se $\;DE+FD\;$ não depender da posição de $\;D\;$ em $\;BC\;$, o perímetro de $\;DEAF\;$ não varia quando a posição de $\;D\;$ varia. Desloque $\;D\;$ para confirmar isso (conjetura) - nos textos se vê como variam os comprimentos $\;DE\;$ e $\;FD\;$ tendo soma constante.

$\;\fbox{n=3}:\;$ Claro que ângulos de lados paralelos são iguais em amplitude, por exemplo, $\;\angle B\hat{A}C= \angle D\hat{E}C =\angle B\hat{E}D, \; $ $\angle B\hat{C}A= \angle D\hat{C}E = \angle B\hat{D}F\;$ e, como é óbvio, por ser $\;\angle A\hat{B}C = \angle B\hat{C}A\;$ do triângulo isósceles $\;ABC,\;$ os triângulos $\;BDF\;$ e $\;DCE,\;$ de onde se retira que $\;DE=EC\;$ ou seja $\;\overline{FD}+\overline{ED} = \overline{FD}+\overline{EC}=\overline{AE}+\overline{ED}\;$
Prolongando $\;FD\;$ e tirando por $C\;$ a paralela a $\;AB\;$ obtemos um paralelogramo $\;FGCA\;$ que para qualquer posição de $\;D\;$ (incluindo $\;B\;$ e $\;C\;$) $\;FD+DE =FG= AC\;$ que não depende da posição de $\;D\;$

22 janeiro 2018, Criado com GeoGebra




Aproveitamos a oportunidade para lembrar um OUTRO PROBLEMA (clássico), usando a mesma construção:
Dos paralelogramos $\;DEAF\;$ isoperimétricos, qual deles tem área máxima?
De outro modo, qual a posição de $\;D\;$ para a qual $\;DEAF\;$ tem área máxima?
Ou ainda, de entre os números com uma certa soma constante, quais deles têm um produto máximo?
$\;\fbox{n=4}:\;$ Mostra-se a área de $\;DEAF\;$ variável com $\;D\;$ como se pode ver.
$\;\fbox{n=5}:\;$ Quando a posição de $\;D\;$ varia em $\;BC\;$, a área de $\;DEAF\;$ como função de $\;BD\;$ é representada por uma curva que se mostra neste passo… □

26.11.14

Invariante nas triangulações de polígonos inscritíveis (2)


Consideremos um polígono convexo $\;[A_1 A_2 \;\ldots A_{k} \ldots A_n]\;$ inscrito numa circunferência de centro $\;O \;$ e raio $\;R\;$ dados. Tomemos uma triangulação, por exemplo $\; [A_1A_2A_3], \; [A_1A_3A_4],\; \dots , \; [A_1A_{k-1}A_k], \; \dots \; [A_1A_{n-1}{A_n}]$ de $\;n-2\;$ triângulos e designemos por $\;i_k\;$ o inraio do triângulo $\;[A_1A_kA_{k+1}]\;$. Há várias triangulações para cada polígono, mas
a soma dos raios das circunferências inscritas nos triângulos é a mesma para qualquer das triangulações possíveis. Provemos.


No artigo publicado a 20.11.14 sob o título soma invariante nas triangulações de quadrilátero convexo inscrito mostrámos que, para um quadrilátero convexo inscrito numa cirucnferência de centro $\;O\;$ e raio $\;R\;$ dados,
  • a soma dos inraios de uma das triangulações é igual à soma dos inraios da outra
  • e, para isso, se demonstrou o teorema de Carnot:
    • para um triângulo acutângulo $\;ABC\;$ inscrito numa circunferência de centro $\;O\;$ e raio $\;R\;$ se chamarmos $\;i\;$ ao inraio de $\;ABC\;$ e $\; m, \; n, \;p\;$ às distâncias de $\;O\;$ aos lados $\;a=BC, \;b=AC, \;c=AB\;$ respetivamente, então $$R+i =m+n+p$$
    • para um triângulo $\;ABC\;$, obtusângulo em $\;C, \;$ verifica-se que $$R+i =m+n-p$$
  • óbvio é que se $\;ABC\;$ for um triângulo retângulo em $\;C, \;$ verifica-se que $$R+i =m+n$$ já que $\;AB=c\;$ é um diâmetro de $\;(O)\;$


Na figura abaixo, apresenta-se um hexágono convexo $\;[A_1A_2A_3A_4A_5A_6]\;$ inscrito numa circunferência $\;(O).\;$ A imagem inicial apresenta um hexágono com $\;O\;$ como ponto do seu interior e no interior de $\;[A_1A_4A_5]\;$ triângulo da triangulação feita tomando as diagonais tiradas por $\;A_1\;$, no exemplo. Para além das diagonais, na figura também estão visíveis as distâncias $\;OM_k =m_k\;$ (aos lados do polígono $A_kA_{k+1} \;$) e $\;ON_k = n_k\;$ (às diagonais $\;A_1A_3,\; A_1A_4, \;A_1A_5\;$ que são lados dos triângulos da triangulação tomada.

© geometrias, 24 de Novembro de 2014, Criado com GeoGebra




  1. Aplicando o Teorema de Carnot (referido acima) aos triângulos em que decompusémos o nosso polígono, temos
    $ R+i_1 = m_1+m_2-n_1 $ $R+i_2 = n_1+m_3-n_2$ $R+i_3 = n_2+n_3 + m_4$ $R+i_4 = m_5 +m_6 -n_3$ e, por isso, $$ 4R + (i_1 + i_2 +i_3 +i_4 )= m_1+m_2+m_3+m_4 +m_5+m_6 $$ ou $$i_1 + i_2 +i_3 +i_4 =m_1+m_2+m_3+m_4 +m_5+m_6 -4R \;\;\;\;\; \square$$ A soma dos inraios é igual à soma das distâncias do circuncentro aos lados do polígono diminuida do número de circunraios igual ao número de triângulos da triangulação (exatamente igual a $\;n-2, \;$ sendo $\;n\;$ o número de vértices ou número de lados do polígonos unicamente dependente do polígono e da sua circunscrita e independente da triangulação tomada.

    Este raciocínio aplica-se a qualquer polígono convexo inscritos em circunferência com centro no interior do polígono e, forçosamente, em algum triângulo cujos lados são lados ou diagonais do polígono.
  2. O mesmo raciocínio pode ser utilizado para o caso de $\;O\;$ ser um ponto exterior ao polígono inscrito em $\;(O,\; R).\;$ Nestas condições, o ponto $\;O\;$ é exterior a todos os triângulos de qualquer triangulação que se tome.
    Verificará que, por aplicação do Teorema de Carnot, o resultado se mantém o mesmo.
  3. O resultado pode ser demonstrado por indução finita, usando o resultado da entrada anterior. Para um triângulo, o inraio varia conforme tenha um ângulo obtuso, reto ou todos agudos. Para um quadrilátero convexo inscrito mantém-se invariante a soma dos inraios para cada uma das triângulações. Bastará provar que, para qualquer $\;p\geq 4\;$,
    se a soma dos inraios de um polígono convexo inscrito de $\;p\;$ lados é invariante para todas as suas triangulações então também tal se verifica para todos os polígonos convexos inscritos de $\;p+1\;$ lados
    Um polígono convexo inscrito de $\;p+1\;$ lados, $\;\left\{A_k\right\}_{k=1, ...,p+1}\;$, pode decompor-se sempre em dois polígonos inscritos na mesma circunferência, a saber: um polígono de $\;p\;$ lados — $\;\left\{A_k\right\}_{k=1, ...,p}\;$ —, e um triângulo $\;A_1A_pA_{p+1}\;$. Pela hipótese de indução, para $\;p\geq 4\;$. $$i_1 + i_2+ i_3 + \dots + i_{p_3}+ i_{p-2} =m_1+ m_2+ m_3 + \dots +m_{p-2} + n_{(p+1)/2} -(p-3)R$$ $\;O\;$ pode ser interior de $\;\left\{A_k\right\}_{k=1, ...,p}\;$ (e exterior de $\;A_1A_pA_{p+1}\;$) ou .... ou exterior a ambos....
    Consideremos $\;O\;$ exterior a $\;A_1A_pA_{p+1}\;$ e $\angle A_1\hat{A_p}A_{p+1}$ obtuso. A distância de $\;O\;$ ao lado $\;A_1A_p\;$, oposto ao obtuso neste triângulo, é $\;n_{(p+1)/2} \;$, sendo $\;m_p\;$ a distância de $\;O\;$ a $A_pA_{p+1}$ e $\;m_{p+1}\;$ a $A_{p+1}A_1$.
    Para este último triângulo $\;A_1A_pA_{p+1}\;$ inscrito em $\;(O, \;R)\;$ de que $\;O\;$ está no exterior ($\angle A_1\hat{A_p}A_{p+1}$ é obtuso), o seu inraio $\;i_{p-1}\;$ é igual a $\;m_p + m_{p+1} - n_{(p+1)/2} -R \;$
    Podemos então escrever para $\;p\geq 4, $ $$i_1 + i_2+ i_3 + \dots + i_{p-3}+ i_{p-2} + \underbrace{i_{p-1}}=\\\ =m_1+ m_2+ m_3 + \dots +m_{p-2} + n_{(p+1)/2} -(p-2)R + \underbrace{m_p + m_{p+1} - n_{(p+1)/2} -R}$$ ou $$i_1 + i_2+ i_3 + \dots + i_{p-3}+ i_{p-2} + i_{p-1}=m_1+ m_2+ m_3 + \dots +m_{p+1-2} + m_{p+1-1} + m_{p+1} -(p+1-2)R $$ como queríamos provar.