9.10.18

Ciclóide - 1


Temos vindo a dedicar-nos a restaurar a visibilidade das construções dinâmicas que, por razões que nos são estranhas, foi prejudicada. Esse trabalho é lento e cheio de percalços e enganos. Pedimos desculpa e agradecemos ajuda para descobrir os nossos erros de restauração. Entretanto decidimos abordar alguns problemas de rastos de andarilhos sugeridos por um problema enunciado por Earl Perry, na pagina 17 de Geometry / Axiomatic Developments with Problem Solving
Uma roda circular de raio $\;r\;$ pode rodar em torno do seu centro segundo um dado ângulo $\;alpha.\;$ Quando isso acontece, cada ponto da circunferência descreve um arco cujo comprimento é $\;\alpha r. \;$

Como sabemos o comprimento de uma circunferência é $\;2\pi r,\;$ ou seja, quando um ponto faz uma volta inteira percorre $\; 2\pi r cm\;$ se a unidade de comprimento for cm ou $\;2\pi\;$ se a unidade tomada for r e, obviamente, se roda $\; \alpha\;$ rad percorre um comprimento $\;alpha \;$ cm se $\;r = 1\;$cm ou $\;k.\alpha \;$cm se $\;r = k\;$ cm
Se fixarmos um ponto de uma roda circular de raio $\;r \;$ que roda sem deslizar em linha reta, o seu centro percorre um caminho em linha reta de comprimento $\;2\pi r\;$ enquanto qualquer ponto da sua circunferência dá um volta completa. E, obviamente, o centro percorre um caminho em linha reta de comprimento $\;\alpha r\;$ quando as posições relativas de um ponto fixo na circunferência fazem um ângulo ao centro $\;alpha,\;$ e um caminho correspondente a $\;\alpha r \;$ que, obviamente, não é em linha reta e é mais extenso que o $\;alpha r\;$ percorrido pelo centro da roda circular no seu deslocamento sem deslizamentos.

O problema é saber do rasto deixado pelo ponto considerado.


ciclóide
r=1


28.5.18

Estudo do Problema de Castillon

Problema: Inscrever numa dada circunferência um triângulo [DEF] em que cada um dos seus lados passa por um único de três pontos dados A, B, C : por exemplo $\;A\in FE, \;B \in ED, \;C \in DF\;$



Em síntese, a construção, que a seguir se apresenta, passo a passo, não é óbvia por não serem óbvios os elementos que vão sendo determinados em cada passo. Os autores de F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- a propósito, esclarecem: "A síntese permite a quem sabe, expôr o que conhece; é habitual usá-la nos elementos de geometria, na demonstração de teoremas; mas a síntese não pode ser usada na resolução de problemas porque não pode indicar a priori cada uma das construções a fazer. A análise é por excelência, o método para descobrir; e, por conseguinte, usa-se constantemente na solução das questões que ainda não estudámos."
Fazendo variar o cursor $\;\fbox{n= 1, 2, … 10}\;$ pode seguir sucessivos passos da construção, envolvendo potências de pontos relativamente à circunferência dada que servem para provar igualdade de ângulos interessantes cuja utilidade é desvendada pela análise do problema resolvido (ou pelo resultado obtido :-).





Transcrevemos a seguir uma adaptação do excerto de metodologia para a resolução deste problema seguindo
F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)-
acompanhadas das figuras ilustrativas que lá se encontram.


Problema de Castillon: 51. On donne trois points $\;A, \;B, \;C,\;$ et une circonférence; inscrire dans cette circonférence un triangle $\;DEF,\;$ tel que chaque côté passe par un des points donnés.



Considerado o problema resolvido, a imagem ao lado esclarece que, sendo $\;GF\;$ paralela a $\;BC\;$ e que $\;GE\;$ interseta $\;BC\;$ em $\;H,\;$ sendo iguais os ângulos ($\;BHE\;$ ou) $\;\angle B\hat{H}G\;$ e $\: \angle H\hat{G}F\;$ alternos internos no sistema de retas paralelas $\;GF,\; BC\;$ cortadas pela secante $\;HG\;$ e também $\;\angle H\hat{G}F;$ e $\;BDC\;$ são iguais por estarem inscritos num mesmo arco $\;ETF.\;$ Assim sendo, são semelhantes os triângulos $\;BHE\;$ e $\;BCD\;$ com o ângulo $\;B\;$ comum e os ângulos $\;BHE\;$ e $\;CDB\;$ iguais. E, pelo menos, o ponto $\;H\;$ pode ser determinado por $\;HB.BC=BT^2.\;$
Começamos por aí.
É preciso determinar um dos pontos $\;D,\; E\;$ ou $\;F\;$ para que o problema fique resolvido.

Por isso, podemos dizer que precisamos de resolver o seguinte
Problème
52. On donne deux points $\;A, \;H,\;$ une circonférence et une droite $\;BC.\;$ Déterminer sur cette circonférence un point $\;E,\;$ tel qu'en le joignant aux deux points donnés $\;A,\; H,\;$ la corde $\;FG\;$ soit parallèle à la droite $\;BC.\;$ Soit le problème résolu et $\;FG\;$ parallèle à $\;BC.\;$



Consideremos o problema resolvido e $\;FG\;$ paralela a $\;BC.\;$ De forma análoga ao feito no caso anterior, acrescentamos à ilustração (das condições do problema resolvido) uma paralela a $\;HA\;$ tirada por $\;F,\;$ que intersecta a circunferência dada em $\;L\;$ e traçamos a reta $\;LG\;$ que intersecta $\;HA\;$ em $\;M.\;$

Nestas condições, temos $\; \angle G\hat{F}L = \angle D\hat{H}M, \; \mbox{e} \; \angle F\hat{L}M+\angle L\hat{M}H = \pi, $
$\; \angle G\hat{E}F +\angle F\hat{L}M = \pi \; \;\mbox{sendo por isso,}\;\;\angle G\hat{M}H = \angle H\hat{E}A\; $
e, em consequência,
$ \Delta [HGM] \sim \Delta [HEA],\;$ dos quais $\angle \hat{H}\; $ é ângulo comum. E é essa semelhança que nos permite escrever $$\frac{\overline{HM}}{\overline{HE}} = \frac{\overline{HG}}{\overline{HA}} \; \Leftrightarrow \overline{HM} \times \overline{HA}= \overline{HE} \times \overline{HG}= \overline{HT}^2 $$ que nos permite determinar sobre $\;HA\;$ o ponto $\;M,\;$ colinear de $\;G, \;L\;$ sendo
$\;\angle B\hat{H}M = \angle G\hat{F}GL\; \Leftarrow \;(BH \parallel GF \wedge HM \parallel FL )$




E, assim, o problema de Castillon depende agora da resolução do
Problème
53. Par un point donné $\;M,\;$ mener une sécante telle que l'angle inscrit $\;L\hat{F}G\;$, qui correspond à la corde interseptée $\;GL,\;$ soit égale à un anglé donnée $\;A\hat{H}B.\;$



Por um ponto qualquer da circunferência dada, tiramos paralelas a $\;BH\;$ e a $\;MH\;$ ou seja inscrevemos na circunferência um ângulo de amplitude igual a $\; \angle B\hat{H}M\;$
Em seguida traçamos a corda correspondente a esse ângulo inscrito. As cordas correspondentes a ângulos inscritos iguais em amplitude a ele, são iguais e tangentes a uma circunferência concêntrica à dada. Determinada essa nova circunferência pelo centro e pelo pê da perpendicular da corda do dito ângulo inscrito com amplitude igual a $\; \angle B\hat{H}M,\;$ o problema de Castillon fica resolvido tirando por $\;M\;$ a tangente a ela que intersectará a circunferência inicialmente dada nos pontos $\;G, L\;$

Por esse ponto $\;G\;$, finalmente determinado, a paralela a $\;BC\;$ por ele tirada intersecta a circunferência inicial em $\;F.\;$
$\;D\;$ ficará determinado na circunferência pela reta $\;CF\;$ e
o ponto $\;E\;$ ficará determinado sobre a circunferência pela reta $\;DB\;$ ou pela reta $\;FA.\;$… $\blacksquare$