20.3.18

Um quadrado, um ponto variável sobre um lado, um ângulo e sua invariância



António Aurélio Fernandes passou por um problema no YouTube que por lá foi resolvido usando vetores e apresentou-o a si mesmo aqui a pensar numa demonstração mais elementar.

Enunciado:
No quadrado $\;[ABCD]\;$ toma-se um ponto $\;P\;$ qualquer sobre $\;BC.\;$ Por $\;A\;$ traça-se a semi reta $\;AP\;$ e, em seguida, por $\;C\;$ tira-se uma perpendicular a $\;AP\;$ que encontra a reta $\;AB\;$ em $\;Q.\;$
Provar que o ângulo em $\; \angle A\hat{Q}P\;$ se mantém constante quando $\;P\;$ toma diferentes posições em $\;[BC].\;$



Seguir os passos da construção e demonstração
$\;\fbox{n=1}:\;$ Apresenta-se o quadrado $\;[ABCD]\;$ e um ponto $\;P\;$ de $\;[BC].\;$

$\;\fbox{n=2}:\;$ Apresenta-se $\;\dot{A}P\;$ (diferente para cada $\;P\;$ de $\;[BC]\;$ e a perpendicular a $\;AP\;$ tirada por $\;C\;$ que interseta $\;\dot{A}B\;$ em $\;Q\;$

14 março 2018, Criado com GeoGebra



$\;\fbox{n=3}:\;$ Finalmente acrescentamos $\;[PQ]\;$ e o ângulo $\;B\hat{Q}P\;$ rotulado pelo seu valor (amplitude) em graus. Pode deslocar $\;P\;$ sobre $\;BC\;$ para verificar que o seu valor se mantém invariável e que quando $\;P = C, \;\; [AP] = [AC]\;$ é uma das diagonais do quadrado e, para esta posição de $\;P,\;$ a perpendicular a $\;AP\;$ tirada por $\;C\;$ é perpendicular a $\;AC\;$ em $\;C=P\;$ e, por isso, paralela a $\;BD,\;$ já que as diagonais de um quadrado são perpendiculares.
Para esta posição de $\;P=C\;$ é bem óbvio que $\;AQP=AQC\;$ é um triângulo retângulo em $\;P=C\;$e isósceles, já que $\;CQ \perp AC \wedge AC=CQ =BD\;$ e $\;\angle C\hat{A}Q = \angle A\hat{Q}C \;$

$\;\fbox{n=4}:\;$ Acrescentamos as diagonais $\;CA, \;BD\;$

$\;\fbox{n=5}:\;$ A situação descrita acima para o caso de $\;P\;$ assumir a posição de $\;C\;$ é aplicável a qualquer $\;P\;$ de $\;BC,\;$ observando o quadrado de lado $\;BP\;$, $\;[BPEF], \; $ já que a sua diagonal $\;BE\;$ é um segmento da diagonal $\;BD\;$ de $\;[ABCD]\;$ e $\;PF \parallel CA\;$.

13.3.18

Dividir a altura de um trapézio em partes cujo produto seja igual ao produto das bases



TEOREMA:

Se uma semicircunferência de diâmetro igual ao lado oblíquo de um trapézio retângulo corta o lado oposto, cada um dos pontos dessa intersecção divide a altura do trapézio retângulo em dois segmentos cujo produto é igual ao produto das bases do trapézio.



F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)- Théorème. 24. Lorsque la demi-circonférence décrite sur le côté oblique d'un trapèze rectangle coupe le côté opposé, chaque point d'intersection divise la hauteur en deux segments dont le produit égale le produit des bases du trapèze.

$\;\fbox{n=1}:\;$ Apresenta-se um trapézio $\;[ABCD]\;$ retângulo em $\;B,\;C\;$ de bases $\;AB, \;CD\;$ (paralelas) e altura $\;BC\;$

$\;\fbox{n=2}:\;$ No caso do nossa ilustração, esse trapézio é tal que uma das semi-circunferências de diâmetro $\;AD\;$ (lado oblíquo) interseta a altura $\;BC\;$ (que é o lado oposto a $\;AD\;$) em $\;N, \;P,\;$ como se mostra na figura.

O nosso problema consistirá em provar que $$\;\overline{BN}\times \overline{NC}= \overline{AB} \times \overline{CD} = \overline{BP}\times \overline{PC}\;$$ nas condições descritas no enunciado.



13 março 2018, Criado com GeoGebra



$\;\fbox{n=3}:\;$ Ora para ser verdade que $$\;\overline{BN}\times \overline{NC}= \overline{AB} \times \overline{CD}\;$$ teria de ser verdade que $$\; \frac{BN}{AB} = \frac{CD}{NC} \;$$ o que equivale a serem semelhantes os triângulos $\;ABN\;$ e $\;CDN\;$ que são retângulos, o primeiro em $\;B\;$ de catetos $\;BN, \; AB\;$ e o segundo em $\;C \;$ de catetos $\;NC, \;CD.\;$
Como $\; \angle AND = 1\;$ reto, inscrito na semi-circunferência $\;(AND)\;$ de diâmetro $\;AD, \;$ e $$\;\angle BNA + \angle AND + \angle DNC = 2\;\mbox{retos},$$ conclui-se que $$\;\angle BNA + \angle AND = 1\; \mbox{reto}$$ o que nos conduz às igualdades $$\; \angle NAB= \angle DNC \wedge \angle BNA= \angle CDN,\;$$ ou seja, $$\; \Delta ABN \sim \Delta NCD \;$$ e $$\overline{BN} \times \overline{NC} = \overline{AB} \times \overline{CD},\;$$como queríamos provar. □

$\;\fbox{n=4}:\;$ O mesmo raciocínio para o ponto $\;P\;$ concluindo que $\; BP \times PC = AB \times CD .\;$