12.6.14

Resolver problema de construção, usando composta de rotações (e meia volta)


Problema:    
O tesouro enterrado
Um velho pergaminho, que descrevia o local onde piratas enterraram um tesouro numa ilha deserta, dava as seguintes instruções:
Na ilha só há duas árvores, $\;A\;$ e $\;B\;$, e os restos de uma forca.
Comece na forca e conte os passos necessários para ir, em linha recta, até à árvore $\;A\;$. Quando chegar à árvore, rode $\;90^o \;$ para a esquerda e avance o mesmo número de passos. No ponto em que parou, coloque um marco no chão.
Volte para a forca e vá em linha recta, contando os seus passos, até à árvore $\;B$. Quando chegar à árvore, rode $\;90^o\;$ para a direita e avance o mesmo número de passos, colocando outro marco no chão, no ponto em que acabar.
Cave no ponto que fica a meio caminho entre os dois marcos e encontrará o tesouro.
Um jovem aventureiro que encontrou o pergaminho com estas instruções, fretou um navio e viajou para a ilha. Não teve dificuldade em encontrar as duas árvores mas, para seu grande desgosto, a forca tinha desaparecido e o tempo tinha apagado todos os vestígios que pudessem indicar o lugar onde ficava.
Fractal music, hipercards and more, de Martin Gardner

Proposto na brochura Trigonometria e Números Complexos: matemática - 12º ano de escolaridade. Maria Cristina Loureiro... DES. Lisboa:2000 (pp. 65/66), com uma resolução usando números complexos.
Mariana Sacchetti lembrou-se deste problema que tem utilizado na lecionação dos complexos, como um exemplo de problema que poderia ser resolvido usando transformações geométricas.
É o que vamos fazer, considerando que resolver o problema é encontrar o tesouro sem termos a exata localização de vestígios da forca.

A construção a seguir ilustra a resolução do problema, no caso mostrar que, qualquer que seja a posição da forca, seguir as instruções do pergaminho, conduz a uma única posição do tesouro. Com recurso exclusivo a propriedades das transformações geométricas.
  1. São dados os pontos $\;A\;$ e $\;B\;$ de localização das árvores
  2. Conhecida a localização da forca, designemo-la por $\,F\;$, seguir as instruções seria percorrer $\;FA\;$, rodar sobre os calcanhares $\;90^o\;$ para a esquerda e fazer um percurso de comprimento gual a $\;FA\;$, local onde se coloca um marco, designemo-lo por $\;M\;$: $$\begin{matrix} &{\cal{R}} (A, \;-90^o)&&\\ F&\longmapsto&M&\\ &&&\;\;\; \mbox{e, do mesmo modo, para o outro marco,} \;N \\ &{\cal{R}} (B, \;+90^o)&&\\ F&\longmapsto&N&\\ \end{matrix}$$

    © geometrias, 10 de Junho de 2014, Criado com GeoGebra


    Clique no botão $\;\fbox{1}\;$ para seguir as instruções do pergaminho para uma localização da forca.

  3. Não conhecendo a posição exata de $\;F\;$ tomamos um ponto qualquer, $\;F_1$, do chão da ilha para localização da forca. Designando por $\;M_1\;$ e $\;N_1\;$ as posições dos marcos a que chegamos, seguindo as instruções do pergaminho. Se $\;F_1\;$ fosse a localização exata da forca, no ponto médio $\;O\;$ de $\;M_1N_1\;$ valeria a pena cavar porque estaríamos a desenterrar o tesouro.
    É altura de fazer variar a posição de $\;F_1\;$ para observar o comportamento de $\;O\;$
  4. Pela rotação de $\;-90^0\;$ em torno de $\;A\;$, $\;M_1\;$ é a imagem de $\;F_1\;$ e, em consequência, $\;F_1$ é imagem de $\;M_1\;$ pela rotação de $\;+90^0\;$ em torno de $\;A\;$. Podemos escrever: $$\begin{matrix} &{\cal{R}}(A, \;+90^o)&&{\cal{R}}(B, \;+90^o)&\\ M_1&\mapsto & F_1 & \mapsto & N_1 \\ \end{matrix}$$ Ora, a composta de duas rotações $\;{\cal{R}}(B, \;+90^o)\circ {\cal{R}}(A, \;+90^o)\;$ é uma rotação:
    • o ângulo de rotação da composta é a soma dos ângulos das componentes, no caso $\;+90^o + 90^o =180^o$
    • o centro da rotação composta de rotações é um ponto equidistante de qualquer par de elementos relacionados pela composta, no caso $\;O\;$ : $\;OM_1 = ON_1$.
      De um modo geral, o centro da rotação composta determina-se como ponto de encontro das mediatrizes de dois pares de pontos por ela relacionados.
    Assim, se vê que as posições dos marcos $\;M\;$ e $\;N\;$ obtidas, para qualquer posição da forca $\;F\;$ de acordo com as instruções do pergaminho, estão relacionadas por uma transformação de meia volta. E o centro de uma rotação de meia volta é invariante, não dependendo da posição da forca.
O botão $\;\fbox{2}\;$ parte de outra localização da forca. Claro que bastará fazer variar uma posição de $\;F\;$.

8.6.14

Resolver problema de construção usando uma dilação rotativa


Problema:     Imagine dois mapas de Portugal continental em escalas diferentes mas de tal modo que um deles fique inteiramente contido no outro.Prove que existe um e um só ponto do território continental português que fica, na representação nos dois mapas, exactamente sobreposto. Para facilitar uma ilustração do problemas, pode supor que Portugal continental é exactamente um rectângulo.
assim enunciado e proposto por Eduardo Veloso em "Simetria e Transformações Geométricas",GTG APM.Lisboa: 2012


A construção a seguir ilustra essa resolução do problema recorrendo a transformações geométricas
  1. Estão dados na figura dois retângulos de vértices $\;[ABCD]\;$ e $\;[DFGH]\;$ semelhantes, no sentido de que, para quaisquer dois pontos $\;P, \;Q\;$ no retângulo $\;[ABCD]\;$, há dois pontos $\;P', \;Q'\;$ no retângulo $\;[EFGH]\;$ tais que a razão $\;\displaystyle \frac{PQ}{P'Q'}\;$ é constante (invariável).
    No caso, a figura obviamente sugere que $$\;\displaystyle \frac{AB}{EF} = \frac{BC}{FG} = \frac{CD}{GH} =\frac{AB}{GH}= ... \;$$ se forem semelhantes os dois retângulos.
    Consideremos a semelhança $\;\cal{S}\;$ para a qual $\; C \mapsto G, \; D \mapsto H, ...\;$
    Se $\;AB \parallel EF\;$ o ponto comum aos dois retânguos sobrepostos seria o centro de uma homotetia, exatamente a interseção $\;AE.BF =CG.DH\;$ e o problema estava resolvido. Não é o caso da nossa figura.


  2. © geometrias, 8 de Junho de 2014, Criado com GeoGebra


    Clique no botão "Resolução" que seguir a nossa resolução.

  3. Uma transformação de semelhança é sempre a composta de uma homotetia com uma isometria. A figura dos dois retângulos sugere-nos uma rotação que transforme, por exemplo $\;[EFGH]\;$, num retângulo $\;[E'F'G'H']\;$ para o qual $\; E'F' \parallel H'G' \parallel CD \parallel AB\;$ seguida de uma homotetia que transforme $\;[E'F'G'H']\;$ em $\;[ABCD]\;$.
    Como sabemos, há muitas semelhanças possíveis compostas de rotações (de vários centros e ângulos de rotação) com homotetias de razão $\:\displaystyle \frac{AB}{EF} = \frac{BC}{FG}=\frac{CD}{GH}= \frac{DA}{HE}\;$(com centros diferentes).
    Qualquer rotação deixa invariante o seu o centro e qualquer homotetia deixa invariante o seu centro. Para que haja um ponto comum aos dois mapas sobrepostos é preciso que a semelhança seja composta de uma rotação com uma homotetia de centro no centro de rotação. Se o centro da rotação não for o centro da homotetia, esta não deixa invariante o centro da rotação.
  4. $$\begin{matrix} &{\cal{R}}(O, \alpha)&&{\cal{H}}(O, k)&\\ [EFGH]&\longrightarrow&[E'F'G'H']& \longrightarrow&[ABCD]\\ E&\mapsto & E' & \mapsto & A \\ F&\mapsto & F' & \mapsto & B \\ G&\mapsto & G' & \mapsto & C \\ H&\mapsto & H' & \mapsto & D \\ \end{matrix}$$ Para que a centro, designado por $\;O$, da rotação seja o centro da homotetia é preciso que $\;\alpha=EÔE'=EÔA=FÔF'=FÔB=GÔG'=GÔC=HÔH'=HÔD\;$, já que, para a homotetia de centro $\;O\;$ que faz corresponder $\;H'\;$ a $\;D\;$ e $\;G'\;$ a $\;C\;$, $\; O, \;H',\;D\;$, são colineares como são colineares $\;O, \;G', \;C$, ou seja, $\;HÔD = GÔC\;$....
  5. Como se determina esse ponto $\;O\;$ centro da dilação rotativa (composta de rotação e homotetia de centro comum)?
    • Toma-se, por exemplo, o ponto $\;K\;$ da interseção $\;CD.GH\;$ e o ângulo $\; \alpha = (\dot{K}D, \dot{K}H)= (\dot{C}D, \dot{G}H) = (\dot{B}C, \dot{F}G), = ... $
    • Da circunferência que passa por $\;H, \;D, \;K;$ o arco $\;\widehat{HD}$ assinalado (a tracejado grosso) é o arco da circunferência $\;(HDK);$ em que se inscreve $\;\alpha\;$ e, por isso, qualquer ponto $\;P\;$ da circunferência que não seja $\;H, \;D$, nem ponto desse arco é vértice de um ângulo $H\hat{P}D$ de amplitude $\;\alpha\;$
      Do mesmo modo, o arco $\;\widehat{GC}$ da circunferência que passa por $\;G, \;C, \;K\;$ em que se inscrevem ângulos de amplitude $\;\alpha\;$ com vértice $\;Q\;$ nessa circunferência $\;(GCK)\;$ e fora do arco.
  6. No caso da nossa figura, as circunferências $\;(GCK)\;$ e $\;(HDK)\;$ têm dois pontos em comum que são vértices de ângulos de amplitude $\;\alpha\;$. Um deles é $\;K\;$ e o outro é $\;\mathbb{O}\;$. A vermelho na figura, este é o ponto procurado: $$\begin{matrix} &{\cal{R}}(O, \alpha)&&\\ G&\longmapsto & G'& G'ÔG= CÔG =\alpha\\ H&\longmapsto & H' & H'ÔH= DÔH =\alpha \wedge G'H' \parallel CD \wedge GH=G'H'\\ &&&\\ &{\cal{H}}(O, k)&&\\ G'&\longmapsto & C& G' \in OC\\ H'&\longmapsto & D & H' \in OD \wedge G'H'= GH = CD: \frac{CD}{G'H'}=\frac{CD}{GH} =k\\ \end{matrix} $$