16.3.14

Usando lugares geométricos para resolver problemas de construção (11)

Problema: Determinar um triângulo retângulo inscrito numa dada circunferência e tal que os seus catetos passem por dois pontos dados.

Na construção a seguir, apresentamos os passos da resolução do problema de construção.
       Dados (a azul): uma circunferência de centro $\;O$, dois pontos $\;P,\;Q\;$

Para resolver este problema, basta determinar um ponto $\;A\;$ da circunferência dada, de tal modo que $\;P\hat{A}Q\;$ seja um ângulo reto.
  1. O lugar geométrico dos pontos tais que as retas tiradas para dois extremos $\;P\;\;,\;Q\;$ de um segmento fazem um ângulo é constituído por dois arcos de circunferências congruentes que têm por corda comum $\;PQ\;$. No caso, como $\;P\hat{A}Q$ é reto, o lugar geométrico são dois semicírculos, ou seja $\;PQ\;$ é um diâmetro. Obviamente, os extremos do diâmetro não são pontos do lugar geométrico (5º lugar geométrico da lista)

    Poderá seguir os passos desta construção elementar, deslocando o cursor $\;\fbox{n}\;$ na figura abaixo.


    © geometrias, 16 de Março de 2014, Criado com GeoGebra


  2. Construímos o lugar geométrico dos pontos tais que $\;P\hat{A}Q\;$ é reto; nada mais que a circunferência de diâmetro $\;PQ\;$, excetuando os seus pontos $\;P\;$ e $\;Q\;$ - tracejada a castanho, na figura.
  3. Qualquer dos pontos de interseção da circunferência de diâmetro $\;PQ\;$ (centro $\;M\;$) com a circunferência dada de centro $\;O\;$, caso existam, resolve o problema.
  4. No caso da nossa figura, as circunferências intersetam-se em dois pontos $\;A\;$ e $\;A'\;$.
  5. O triângulo $\;APQ\;$ é retângulo em $\;A\;$. Tomemos os segundos pontos de interseção das retas $\;AP\;$ e $\;AQ\;$ com a circunferência de centro $\;O\;$ dada, que designámos por $\;B\;$ e $\;C\;$ respetivamente. Como $\;A\;, B\;, C\;$ são pontos da dada circunferência centrada em $\;O\;$, a hipotenusa $\;BC\;$ oposta ao ângulo reto em $\;A\;$, passa pelo ponto $\;O\;$.
    O triângulo $\;ABC\;$ está bem definido e tem as propriedades requeridas pelo problema.
  6. O triângulo $\;A'B'C'\;$ obtido de forma análoga ao $\;ABC\;$ é outra solução do problema.

Para a circunferência dada, fazendo variar algum dos pontos $\;P; \;Q\;$ (ou ambos) confirmará que pode haver duas, uma ou zero soluções.

15.3.14

Usando lugares geométricos para resolver problemas de construção (10)

Problema: Determinar uma circunferência de um dado raio e centro sobre uma dada reta que seja tangente a uma circunferência dada.

Na construção a seguir, apresentamos os passos da resolução do problema de construção..
1.
Dados (a azul): uma circunferência de centro $\;O_0\;$, uma reta $\;a\;$ ; um segmento $\;r\;$.
2.
Para resolver este problema, basta-nos determnar um ponto $\;O\;$ sobre $\;a\;$ de tal modo que seja centro de uma circunferência de raio $\;r\;$ e tangente à circunferência dada de centro $\;O_0\;$.
  • As circunferências de raio $\;r\;$ que tocam num só ponto uma circunferência de centro $\;O_0\;$ e raio $\;r_0\;$ estão sobre uma circunferência de centro $\;O_0\;$ e raio $\;r_0 + r\;$
  • Traçada essa circunferência $\;(O_0, r+r_0 )\;$,lugar geométrico dos pontos $\;P\;$ tais que $\;O_0P=r_0 +r\;$, só nos resta determinar a interseção dela com a reta $\;a\;$.
    No último passo toma-se $\;O\;$, um dos pontos de interseção de $\;(O_0, r+r_0 )\;$, e a circunferência $\;(O, r)$ (a vermelho) satisfaz as condições do problema.
Utilizámos tão só circunferências, ou seja o 1º lugar geométrico da lista.
Poderá seguir os passos desta construção elementar, deslocando o cursor $\;\fbox{n}\;$

© geometrias, 15 de Março de 2014, Criado com GeoGebra


3.
No caso da nossa figura, a circunferência $\;(O_0, r_0+r) \;)$ interseta $\;a\;$ em dois pontos, ou seja há duas soluções para o problema.
Pode fazer variar o tamanho de $\;r\;$ e confirmar que pode haver uma só solução ou nenhuma. E poderá, estudar as condições de existência das soluções (dependendo de $\;r\;, \;r_0\;$, ...)