Problema: Determinar um triângulo retângulo inscrito numa dada circunferência e tal que os seus catetos passem por dois pontos dados.
Na construção a seguir, apresentamos os passos da resolução do problema de construção.
Dados (a azul): uma circunferência de centro $\;O$, dois pontos $\;P,\;Q\;$
Para resolver este problema, basta determinar um ponto $\;A\;$ da circunferência dada, de tal modo que $\;P\hat{A}Q\;$ seja um ângulo reto.
Para a circunferência dada, fazendo variar algum dos pontos $\;P; \;Q\;$ (ou ambos) confirmará que pode haver duas, uma ou zero soluções.
Na construção a seguir, apresentamos os passos da resolução do problema de construção.
Dados (a azul): uma circunferência de centro $\;O$, dois pontos $\;P,\;Q\;$
Para resolver este problema, basta determinar um ponto $\;A\;$ da circunferência dada, de tal modo que $\;P\hat{A}Q\;$ seja um ângulo reto.
- O lugar geométrico dos pontos tais que as retas tiradas para dois extremos $\;P\;\;,\;Q\;$ de um segmento fazem um ângulo é constituído por dois arcos de circunferências congruentes que têm por corda comum $\;PQ\;$. No caso, como $\;P\hat{A}Q$ é reto, o lugar geométrico são dois semicírculos, ou seja $\;PQ\;$ é um diâmetro. Obviamente, os extremos do diâmetro não são pontos do lugar geométrico (5º lugar geométrico da lista)
Poderá seguir os passos desta construção elementar, deslocando o cursor $\;\fbox{n}\;$ na figura abaixo.
© geometrias, 16 de Março de 2014, Criado com GeoGebra
- Construímos o lugar geométrico dos pontos tais que $\;P\hat{A}Q\;$ é reto; nada mais que a circunferência de diâmetro $\;PQ\;$, excetuando os seus pontos $\;P\;$ e $\;Q\;$ - tracejada a castanho, na figura.
- Qualquer dos pontos de interseção da circunferência de diâmetro $\;PQ\;$ (centro $\;M\;$) com a circunferência dada de centro $\;O\;$, caso existam, resolve o problema.
- No caso da nossa figura, as circunferências intersetam-se em dois pontos $\;A\;$ e $\;A'\;$. O triângulo $\;APQ\;$ é retângulo em $\;A\;$. Tomemos os segundos pontos de interseção das retas $\;AP\;$ e $\;AQ\;$ com a circunferência de centro $\;O\;$ dada, que designámos por $\;B\;$ e $\;C\;$ respetivamente. Como $\;A\;, B\;, C\;$ são pontos da dada circunferência centrada em $\;O\;$, a hipotenusa $\;BC\;$ oposta ao ângulo reto em $\;A\;$, passa pelo ponto $\;O\;$.
- O triângulo $\;A'B'C'\;$ obtido de forma análoga ao $\;ABC\;$ é outra solução do problema.
O triângulo $\;ABC\;$ está bem definido e tem as propriedades requeridas pelo problema.
Para a circunferência dada, fazendo variar algum dos pontos $\;P; \;Q\;$ (ou ambos) confirmará que pode haver duas, uma ou zero soluções.