16.1.14
Com régua e compasso euclidianos, transferir distâncias
Proposição II - De um ponto dado tirar uma linha recta igual á outra recta dada , Euclides usa a sua régua não graduada e o seu compasso colapsante. Os passos dessa construção são ilustrados na construção que se segue:
© geometrias, 16 de Janeiro de 2014, Criado com GeoGebra
Sigamos os passos da construção, deslocando o cursor n.
- São dados três pontos O, A, B.
- Tomamos a circunferência de centro O a passar por A e a circunferência de centro A a passar por O que se cortam reciprocamente em D. Tirando as retas OA, OD e AD (Postulado I), a demonstração da proposição I, já feita, garante que OA=OD=AD e ADO é um triângulo equilátero
- Tomamos, em seguida as circunferências a passar por B centrada em A e a reta AD que, pelo postulado II, podemos prolongar até encontrar essa circunferência em E tal que AE=AB, pela Definição XV
- A circunferência de centro D a passar por E corta a reta OD (prolongada) em F tal que DF=DE, pela Definição XV.
- Como sabemos que são iguais as partes DO da reta DF e DA da reta DE , também são iguais as partes residuais OF de DF e AE de DE, para quem acredita no Axioma III. E, se de cousas eguaes se tirarem outras eguaes, os restos serão iguaes.
- Finalmente, como OF=AE e AE=AB, pelo Axioma I. As cousas, que são eguaes a uma terceira, são eguaes entre si. se conclui que OF=AB e por consequencia temos tirado do ponto O a linha recta OF egual a outra dada AB.
Subscrever:
Enviar feedback (Atom)
Sem comentários:
Enviar um comentário