Para aceder, pode sempre usar o
url: http://geometrias.pt

6.11.09

Grupo dos deslocamentos do plano

Na anterior entrada, seguindo Lucien Godeaux - As Geometrias já referido, deixámos a ideia de uma geometria métrica do plano como "conjunto de propriedades das figuras que não são alteradas quanto estas últimas se submetem a translações, rotações e a reflexões em relação a uma recta". Esta ideia pode estender-se facilmente ao espaço, considerando as reflexões em relação a um plano (no espaço a reflexão relativamente a uma recta é uma meia volta em torno dessa recta).
O que é mais interessante é que se considerarmos a operação de aplicação sucessiva de alguma daquelas transformações que leva pontos P do plano para outros pontos P'', será o mesmo que aplicar uma só dessas transformações. Chamamos produto ou composição a essa aplicação sucessiva. Tomemos duas translações do plano T e T', em que a primeira leva A para um ponto A' e a segunda leva A para A''. Fácil é ver que há uma translação que leva directamente de A para A'', T'' que é a composta (ou produto) T.T'.
Na construção dinâmica que se segue, pretendemos ilustrar isso mesmo.














Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)



E esperamos que a nossa "florida" ilustração revele não só que o produto de duas translações é uma translação, mas que há para cada translação uma outra (sua inversa) que a neutraliza, sendo óbvio que a translação identidade (elemento neutro deste produto) é aquela que deixa imóveis as figuras. Fácil é ver que para além destas propriedades, a composição de translações também é associativa. Dito de outro modo, o conjunto das translações do plano munido desta operação (aplicação sucessiva) é um grupo. De facto, isto é verdade para o conjunto de deslocamentos a que nos temos vindo a referir - translações, rotações e reflexões - que, em conjunto, munidas da operação de composição ou produto, formam o grupo principal da geometria métrica. Chamamos deslocamentos (isometrias, já que os comprimentos se mantêm invariantes) a cada uma das transformações ou aos produtos (ou compostas) de quaisquer delas por qualquer ordem.

Etiquetas:

0 Commentários:

Enviar um comentário

<< Home

2014
EUCLIDES
Instrumentos e métodos

de resolução de problemas de construção