A não perder:
EDUARDO VELOSO, Uma curva de cada vez..
O caracol de Pascal,
Educação e Matemática, revista da A.P.M, nº 138: 2016
História da Matemática, Curvas, Ferramentas, Tecnologia: para estudar e construir.

15.3.06

O que é que queremos saber?

Cada um quer saber coisas diferentes quando constrói e quando olha para uma construção. Todos aprendemos alguma coisa mesmo quando não queremos. Temos a ideia que seguir os passos de uma construção e compreender tudo e todas as razões é bom para desenvolver uma competência fundamental - pelo menos essa, a de raciocinar dedutivamente. Inicialmente, publicámos mesmo alguns exercícios que exigiam (e dependiam d) a escrita das explicações. E publicámos as demonstrações. Depois deixámo-nos disso. Mas acolhemos os escritos das pessoas que sentiram necessidade de explicar as suas opções. Isso é melhor.

Sobre o método geral do artigo anterior, a Rosa Amélia, do Departamento de Matemática da Universidade de Aveiro, quer saber qual a matemática, qual o pensamento matemático que levou ao (ou justificou o) processo para poder discutir porque é que funciona rigorosamente para uns casos e é só aproximado para outros.

Estamos nessa.

14.3.06

Divisão em 7

Ainda não tinha acabado de escrever a pergunta como é que se divide, com régua e compasso, a semicircunferência em sete partes iguais e já o nosso Paulo Correia (de Alcácer do Sal) nos escrevia:

Ora viva...
A divisão de uma semi-circunferência em 7 partes iguais (conforme o anexo):

Sobre um extremo do diâmetro traça-se uma recta, e sobre essa recta, sete comprimentos iguais.
Traça-se o segmento de recta que une o 7º comprimento ao outro extremo do diâmetro e a paralela a este segmento (que divide o diâmetro em 7).
Depois, a intersecção das circunferências de raio igual ao diâmetro centradas nos extremos do diâmetro, e a recta que contem esse ponto e o 1/7b do diâmetro.
Essa recta intersecta a semi-circunferência inicial na divisão pertendida.

Aprendi isto na disciplina de Educação Visual há muito tempo atrás - foi útil agora.
Em Geométricas > Construções > Polígononos Regulares > Heptágono está uma variação deste procedimento para a construção de um heptógono regular inscrito numa circunferência, por um prof. de EVT.

Um abraço,
Paulo Correia


A página que o Paulo refere é do Tiago Carvalho, professor de uma vizinha escola em Ílhavo. Recomendamos vivamente a visita ao Tiago que apresenta construções geométricas animadas, passo a passo, em flash.

E aqui fica a ilustração da construção proposta pelo Paulo:






Já há muito tínhamos começado a discutir estas construções em   o problema com sete lados, ainda antes do início deste bloGeometria e com a ajuda do André Moreira, um outro professor de Educação Visual, a trabalhar numa vizinha escola de Bustos. Ainda não discutimos o rigor destas construções e nem sequer publicámos então a proposta de construção do André que serviu para o heptágono com que ilustrámos o problema com sete lados. Não perde por esperar.

13.3.06

Memórias de Aurélio

De vez em quando, Aurélio Fernandes vem lembrar-nos das propostas passadas que não passaram de propostas. Ele diz que ninguém tentou apresentar uma construção das 3 cirunferências tangentes (duas a duas) centradas em 3 pontos dados. Nem nós que nos ficámos pelas circunferências centradas nos vértices de um triângulo equilátero. Mais geral ainda, o que se propôs foi a construção de três circunferências diferentes tangentes duas a duas. Sem resposta. Até agora. Ficamoa à espera uns dias de uma resposta. Aqui fica uma nota de memória de Aurélio.

Mais propostas com triângulos e circunferências:
(1)Construir três circunferências tangentes entre si e aos lados de um triângulo equilátero.
(2)Construir seis circunferências tangentes entre si e aos lados de um triângulo equilátero.

A construção geral

Apareceram afinal mais estudantes a apresentar a construção cheia de graça do octógono regular (dado o lado), por exemplo, o J. Vieira. E, pelo que nos disseram, estamos perante um processo geral (ensinado em Educação Visual e Desenho) para construção de polígonos regulares a partir do lado. E podemos deslocar o nosso olhar para a matemática do processo. Quer desenhar um heptágono? Divida aquela semicircunferência em sete partes iguais e... O problema será: E como é que se divide (com régua e compasso) uma semicircunferência em sete partes iguais?




5.3.06

O tri(rect)ângulo

Podemos construir um triângulo rectângulo se conhecermos tão somente os comprimentos dos raios das suas circunferências inscrita e circunscrita. Não podemos?

Octógono cheio de graça

Há muitas formas de abordar a construção de um octógono. Apresentámos duas para além das que o Paulo de Alcácer nos mandou. Pode ter interesse ainda olhar para o octógono decomposto em dois trapézios isósceles separados por um rectângulo. E parecia-nos que íamos fechar o capítulo dos octógonos.


Eis senão quando o nosso Afonso Graça, aluno do 11º ano, apresentou uma nova construção muito rica (de implicações).


28.2.06

O octógono mais simples é sagrado.

A construção de um octógono regular a partir do seu lado foi-me sugerida pela arquitectura religiosa e pelo desenho de alguns artefactos sagrados. Mas o que interessa é a simplicidade. O lado de um octógono regular, quando inscrito numa circunferência, corresponde a um ângulo ao centro de 45º. Ao construir uma circunferência de centro em M e diâmetro AB, obtemos um ângulo ANB recto (N sobre a mediatriz de AB). A circunferência de centro em N que passa por A e B, determina O sobre a mediatriz de AB e o ângulo AOB é inscrito, correspondendo ao ângulo ao centro ANB recto, A circunferência circunscrita ao octógono regular de lado AB tem centro em O e passa por A. Gosto da sagrada figura que se segue.



A mais bela e simples: a sagrada.


Notas de quem olha para o céu:
E é claro que basta olhar para cima para ver um ponto P de tal modo que APB vale 2π/16 (a décima sexta parte da circunferência) para obtermos o centro da circunferência circunscrita a um polígono regular de 16 lados iguais a AB. E, continuando a olhar para o céu, ... estão a ver?

Segundo octógono de Alcácer

A segunda construção de Paulo Correia que ele considera ao nível da geometria do 9º ano de escolaridade pode ser acedida, clicando na ilustração feita a partir dela. Escreveu ele, a este respeito: Neste serão octogonal, encontrei uma solução mais simples que consiste em reconhecer que o ângulo interno é de 90º+45º, a partir daí só com paralelas, perpendiculares e compasso, saí o resto... pois era mesmo para o 9º ano... :-)



Primeira construção de um octógono (dado o lado)
de Paulo Correia .

Primeiro octógono de Alcácer

Paulo Correia, de Alcácer do Sal, enviou-nos duas construções para o octógono regular, a partir do lado. Clicando sobre ilustração abaixo tem acesso à primeira construção (em Cinderella) de Paulo Correia. Ele disse o seguinte: (...) a solução não foi trivial para mim, por isso a envio: a azul as primeiras construções para determinar o centro da circunferência onde ficará inscrito o octogono, a vermelho as construções posteriores.



Primeira construção de um octógono
de Paulo Correia.

26.2.06

Do quadrado para octógono regular

Um octógono regular pode ser obtido a partir de um quadrado cortando-lhe quatro cantos rectangulares isósceles iguais. Como mostra a figura. Ao quadrado [JKLM], cortamos os triângulos isósceles iguais a [AIB] (ou [BJC], de hipotenusa [AB] dada para lado do octógono a construir. Se nos é dado o lado do octógono, qual é o lado do quadrado de que ele pode resultar por corte?




Para um octógono de raio 1, tomemos um quadrado de lado V2+1+V2.
Não! A nossa preferida não é esta. Não perdem por esperar.

22.2.06

Soluções com problema

Paulo Correia, de Alcácer do Sal, enviou-nos duas construções de octógno regular a partir do seu lado [já cá cantam 3 e ainda preferimos a nossa:-)] e uma interpretação para a construção da triangulatura do círculo acompanhada de um belo (geometer's)SKETCH(pad). De tudo daremos conta. Mas não adiamos mais a mensagem que desafia. Diz ele:
(...)Em terceiro lugar, uma sugestão de problema, para o qual não tenho resposta, mas que a intuição me diz existir - talvez até fácil...
"Dado um triângulo qualquer, construir um triângulo equilátero equivalente - com a mesma área." Depois podemos "triangular" um quadrado ou um quadrilátero qualquer...
Espero que lhe dê que pensar... julgo que gosta disso...

Tem razão o Paulo quando diz que gostamos de pensar e gostamos de quem de nós pensa sinceramente isso, dando-nos em que pensar. A nós e a todos os que vão passando por aqui. Obrigado, Paulo.
Confesso que escrevi triangulatura por causa da quadratura, mas nunca pensei na palavra para designar algo tão específico como determinar um triângulo regular equivalente a .... Ficamos a dever ao Paulo mais este acerto.

20.2.06

O octógono regular

É claro que todos sabemos inscrever um quadrado num círculo dado. E, por isso, todos sabemos construir o octógono regular inscrito num círculo dado.
O que estamos a propor para estudo é a construção de um octógono regular de que se conhece o lado. Há uma bela construção que precisa de conhecimentos básicos (os estudantes do 9º ano podem pensar sobre esta construção).

19.2.06

Triângulo equilátero equivalente a um círculo

Para aprender a trabalhar com o ReC - Zirkel und Lineal , fazemos algumas experiências. Pode experimentar as ferramentas do ReC, seguindo os passos do exercício que lhe propomos. E, matematicamente, ficamos à espera que nos escreva sobre a razoabilidade desta construção de triangulatura do círculo :-).




Construção de um triângulo equilátero equivalente a um círculo dado.




Como é que vê as coisas na construção? Todas as informações nos interessam, já que, de computador para computador, se notam diferenças quando nós queremos que no essencial seja o mesmo que aparece em todo os lugares geométricos.
Pode seguir os passos da construção, ou reconstruir a dita desde o princípio, a partir da última ferramenta - seta verde.

E já agora! Será que isto tem algum interesse? Esse é o problema eterno sobre cada uma das coisas em cada intervalo do tempo que passa.

As áreas iguais do círculo e do triângulo

Em Março do ano passado, a propósito das comemorações do dia do  π  , publicámos uma entrada 3,14 - Dia do  π   - uma "rectificação" que abriu uma nesga de discusão sobre os inconstrutíveis e, logo, sobre o que podemos considerar uma construção razoável ou que nos dê uma aproximação razoável. Foi a Marianna quem, então, mais se debruçou sobre a prova da razoabilidade da construção de rectificação proposta, estando as suas reflexões publicadas como anexo do artigo citado acima.
Por outra via, a das aulas e de uma tentativa de visualização dinâmica de confirmação do teorema de Pitágoras pelos alunos do 8º ano, começamos a publicar também algumas propostas de exercícios de construção de figuras equivalentes a outra dada. Destes foram sendo colocados vários. Dirão que, por detrás disto tudo sempre pairou a sombra da "quadratura do círculo" :-).
Finalmente, e muito recentemente, colocámos de novo problemas de construção razoável, numa pequena entrada Figuras equivalentes com várias propostas de trabalho. A saber:
a construção (só razoável?)
de um triângulo equivalente a um círculo dado;
de um triângulo equilátero equivalente a um círculo dado;
de um círculo equivalente a um triângulo dado;
de um círculo equivalente a uma coroa circular dada.


Até hoje, já não é para estranhar!, só a Mariana decidiu pegar no assunto que aparece estranho à maior parte dos estudantes e professores de geometria. Foi com ela e, na presença da omipresente testemunha Aurélio, que tentei discutir o que poderíamos entender por aproximação razoável obtida por via de uma construção. A construção de um triângulo equivalente a um círculo dado, proposta por ela, baseia a sua razoabilidade na razoabilidade da rectificação do dia do  π  : Um círculo de raio -r- é obviamente equivalente a um triângulo de base - 2 π  r - e altura -r-, ou coisa assim.
No caso da Mariana, ela constrói um triângulo de base  π  r e alltura 2r e insiste (e bem) numa justificação visual que recorre aos hexágonos inscrito e circunsrito, chamando a atenção para o facto do comprimento do segmento correspondente a meia circunferência ser a olho ... um bocadinho mais do que metade do hexágono inscrito (precisamente 1 lc - lado do hexágono circunscrito + 2r - lados do inscrito) e pedindo desculpa, por não poder avançar mais, nestes termos: Porquê não sei, como já não soube acabar a justificação do problema da rectificação de  π  . Acho que não tenho conhecimento para mais.
Aqui fica o estado da reflexão e o desenho (tirado da construção em Cinderella) da Mariana para a primeira proposta.


E ainda hoje, entre outras experiências de vida, espero colocar uma construção-resposta ao segundo problema de tipo completamente diferente e aparentemente independente daquela rectificação (sempre presente), a ver se aparece alguma alma que nos ajude a ver que somos razoáveis.

2014
EUCLIDES
Instrumentos e métodos

de resolução de problemas de construção