29.8.14

Posições de 3 circunferências tangentes entre si e tangentes a uma reta dada


Problema: Dada uma reta $\;a\;$ construir três circunferências tangentes à reta dada e tangentes duas a duas de que se conhecem os raios $\;r_1, \;r_2\;$ de duas delas.


Os passos da construção podem ser vistos, fazendo variar os valores $\;n\;$ no cursor $\; \fbox{n=1, 2, …, 6}$
  1. $\fbox{n=1}:\;$ Apresenta-se a reta $\;a\;$ e segmentos $\;r_1, \;r_2\;$ de comprimentos iguais aos raios de duas circunferências $\;(O_1, \;r_1), \;(O_2, \;r_2).\;$
  2. $\fbox{n=2}:\;$ Tomamos a circunferência inscrita em $\;(O_1, \;r_1)\;$ para a qual $\;T_1\;$ é um ponto de $\;a :\; O_1T_1 \;\perp\; a \;\wedge\; O_1T_1 =r_1.\;$
  3. $\fbox{n=3}:\;$ Para construir $\;(O_2, \;r_2)\;$ nas condições requeridas temos de determinar os pontos $\;O_2, \; T_2\;$ tais que $\;T_2 \in a, T_2O_2\; \perp \;a, \; T_2O_2=r_2, \;O_1O_2=r_1+r_2\;$
    Analisando o problema resolvido, a posição de $\;T_2\;$ sobre $\;a\;$ relativamente a $\;T_1\;$ é dada por $\;T_1T_2 = 2 \sqrt{r_1r_2}\;$
    Nota: $\;\sqrt{r_1r_2}\;$ é determinado como altura de triângulo retângulo inscrito numa semicircunferência de diâmetro $\;r_1+r_2\;$ por ela dividido nos comprimentos - parcelas).
  4. $\fbox{n=4}:\;$ Esse resultado está bem ilustrado na figura. Recorrendo a um triângulo $\;O_1PO_2\;$ retângulo em $\;P\;$, para o qual um dos catetos é $\;O_1P = |r_1-r_2|\;$ e a hipotenusa é $\;O_1O_2 = r_1+r_2\;$, o outro cateto é $\;O_2P = T_1T_2.\;$
    E assim, pelo Teorema de Pitágoras aplicado a $\;O_1PO_2\;$, $\;T_1T_2 ^2 = (r_1+r_2)^2 - (r_1-r_2)^2= 4r_1r_2\;$, e finalmente $$\;T_1T_2 =2\times \displaystyle \sqrt{r_1r_2}.\;$$ Fica assim determinada a posição da circunferência $\;(O_2, \;r_2)\;$ tangente a $\;a\;$ e a $\;(O_1, \;r_1).\;$

  5. © geometrias, 29 de Agosto de 2014, Criado com GeoGebra


  6. $\fbox{n=5}:\;\;$ Para determinar a posição do ponto de tangência a $\;a\;$ - $\;T_3\;$ e raio $\;r_3\;$ de uma circunferência $\;( O_3, \;r_3),\;$, usamos os resultados anteriores agora aplicados aos pares de circunferências $\;\left(( O_1, \;r_1), \;( O_3, \;r_3)\right)\;$ e $\;\left(( O_2, \;r_2), \;( O_3, \;r_3)\right)\;$:
    $\;T_1T_3 = 2\sqrt{r_1r_3}, \;T_2T_3 = 2\sqrt{r_2r_3}.\;$
    Como terá de ser $\;T_1T_2 = T_1T_3 + T_3T_2,\;$ $\;2\sqrt{r_1r_2}=2\sqrt{r_1r_3} + 2\sqrt{r_2r_3}$, equivalente a $\;\sqrt{r_1r_2}=\sqrt{r_3}(\sqrt{r_1} + \sqrt{r_2})$, por sua vez equivalente a $$\frac{1}{\sqrt{r_3}} =\frac{1}{\sqrt{r_1}} + \frac{1}{\sqrt{r_2}}$$ que nos permitem a determinação de segmento de comprimento $\;\sqrt{r_3} \;$.
    Na nossa construção, usamos a construção de $\;\sqrt{r}\;$ como altura do triângulo retângulo de hipotenusa $\;r+1\;$ por ela dividida nestas suas parcelas, e recorremos à inversão (já muitas vezes aplicada na resolução de problemas de construção neste "lugar geométrico")
    Nota: O que fazemos para obter $\;r_3\;$ após termos obtido $\;\sqrt{r_3}\;$? Tomamos um segmento de comprimento 1 sobre uma reta à distância $\;\sqrt{r_3}\;$. Tiramos por um dos extremos do segmento unitário uma perpendicular a este e marcamos a interseção com a paralela. Tomamos para cateto de um triângulo retângulo o segmento que une esta interseção com o outro extremo do segmento unitário. A reta perpendicular a este cateto vai intersetar a reta do segmento unitário num ponto à distância $\;r_3\;$ do extremo da altura do triângulo de hipotenusa $\;1+\sqrt{r_3}\;$
  7. $\fbox{n=6}:\;\;$ O centro $\;O_3\;$pode ser obtido como interseção das circunferências $\;(O_1, \;r_1+r_3)\;$ e$\;(O_2, \;r_2+r_3)\;$. E a terceira circunferência da solução do problema inicial está bem determinado (com régua e compasso)

20.8.14

Cinco círculos gémeos num quadrado


Começámos o ano de 2008 com a publicação de uma construção animada sobre círculos gémeos (iguais) na faca de sapateiro (que é sempre referida a Arquimedes) que pode ser revisitada, clicando aqui.
Nesta entrada, apresentamos uma construção muito conhecida com triângulos retângulos, usada para demonstrar o Teorema de Pitágoras, mas sujeita a restrições de modo a acolher num quadrado cinco círculos gémeos, em que cada um de quatro deles é tangentes a um lado do quadrado e todos esses quatro são tangentes exteriormente ao quinto central.

Os passos da construção podem ser vistos, fazendo variar os valores $\;n\;$ no cursor $\; \fbox{n=1, 2, …, 6}$
  1. $\fbox{n=1}:\;$ Apresenta-se um triângulo $\;ABC\;$ retângulo em $\;C\;$, de hipotenusa $\;c=AB\;$ e catetos $\;a=BC, \:b=AC.\;$
  2. $\fbox{n=2}:\;$ Tomamos a circunferência inscrita em $\;ABC\;$ cujo centro é o ponto comum às bissetrizes dos ângulos do triângulo, equidistante dos lados do triângulo. Tomammos os pontos de tangência $\;T_a, \;T_b, \;T_c.\;$
  3. $\fbox{n=3}:\;$
    • Como sabemos os segmentos das tangentes a uma circunferência tiradas por um ponto são iguais; $\;AT_b = AT_c, \;BT_a =BT_c, \;CT_b =CT_a\;$
    • Uma tangente a um círculo é perpendicular ao raio no ponto de tangência: $IT_c \perp AB, \;IT_b \perp AC, \; IT_a \perp BC. \;$
    • Num triângulo retângulo em $\;C\;$, $\;T_bC \perp T_aC$.
    • $\;CT_bIT_a\;$ é um quadrado de lado igual ao inraio $\;r\;$

    • $\;AC=b=AT_b+T_bC = AT_b + r\;$ e, logo, $\;AT_b =b-r\;$
      $\;BC=a=BT_a+T_aC = BT_a + r\;$ e, logo, $\;BT_a =a-r\;$
      $\;AB=c=AT_c+T_cB = AT_b + BY_a = b-r + a-r = a+b-2r \;$
      que é o mesmo que $\;2r=a+b-c\,$
    Fica assim estabelecida a relação, para qualquer triângulo retângulo de catetos $\;a,\;b\;$ e hipotenusa $\;c\;$, entre os lados e o raio $\;r\;$ da circunferência inscrita: $$r=\frac{a+b-c}{2}$$

  4. © geometrias, 20 de Agosto de 2014, Criado com GeoGebra


  5. $\fbox{n=4}:\;\;$ Para demonstrar o Teorema de Pitágoras, usamos várias formas de, a partir de triângulos retângulos iguais a um original, construir
    • ou um quadrado de lado igual à soma dos catetos em que as hipotenusas de 4 triângulos iguais são lados de um quadrado, de tal modo que $$(a+b)^2=4\times \frac{ab}{2} +c^2$$ para concluir que $a^2+b^2=c^2$
    • ou um quadrado cujos lados são as hipotenusas de quatro triângulos retângulos iguais de tal modo que $$c^2 =4\times \frac{ab}{2}+ (b-a)^2$$ para concluir que $\;c^2 = a^2+b^2 $
    É esta última construção que se apresenta em que há dois quadrados, um de lado $\;b-a\;$ e outro de lado $\;c\;$ que o contém.
  6. $\fbox{n=5}:\;\;$ Por esta construção, aqui apresentada, se percebe que para um dado quadrado, em que se queiram acolher 5 círculos nas condições requeridas, é preciso que $\;r=\displaystyle \frac{a+b-c}{2},\;$ por estar inscrito no triângulo retângulo, e para ser igual ao inscrito no quadrado de lado $\;b-a\;$ terá de ser, simultaneamente, $\;r=\displaystyle \frac{b-a}{2}\;$. Os dois círculos só são iguais se for $$ \frac{b-a}{2} = \frac{a+b-c}{2},\; \mbox{ou seja, }\; b-a=a+b-c, \; \mbox{que é o mesmo que,}\; c=2a$$
  7. $\fbox{n=6}:\;\;$ Os restantes círculos gémeos podem ser obtidos por isometrias (reflexões, p. ex.) aplicadas aos dois primeiros.
Para obter cinco círculos gémeos num quadrado de lado $\;c\;$, precisamos de decompor o quadrado usando quatro triângulos retângulos de hipotenusa igual ao lado do quadrado e um cateto igual a metade do lado do quadrado.