28.12.18
24.12.18
da Epicicloide à Hipocicloide
Segue-se um texto que acompanha, etapa a etapa, os passos da construção. Isto é, vão sendo apresentados os elementos um a um. Clicar no botão da animação pode não ter qualquer utilidade enquanto não se mostram os elementos que se sucedem por etapas. Se um elemento não está visível, não se vê o movimento desse elemento. Aconselhamos, por isso, que se utilize o botão de animação só a partir da etapa 3. Como alguns elementos em movimento deixam rasto, pode ser necessário recorrer ao botão de reiniciar para limpar esses rastos.
- Começamos por mostrar duas circunferências:
- uma de centro $\;A\;$ e raio $\;r\;$
- outra de centro $\;C\;$ e raio $\;s,\;$
- tangentes em $\;B\;$ e $\;\overline{AB}=r=3s=3\overline{CB}\;$
- Consideremos que a circunferência de centro $\;C\;$ vai rolar em torno de $\;A\;$. Apresenta-se uma outra posição da circunferência de raio $\;s\;$ correspondente a uma rotação de ângulo $\; \alpha \;$ com centro $\;A.\;$ Nessa posição, o ponto de tangência das duas circunferências é uma posição $\;D\;$ tal que o ângulo $\;B\hat{A}D\;$ tem amplitude $\; \alpha \;$ e, pela mesma rotação o ponto $\;C\;$ há de estar agora numa posição $\;E\;$ tal que $\; C\hat{A}E = \;B\hat{A}D = \alpha\;$
- e o ponto fixo em $\; (C, \;s)\;$ que estava na posição $\; B\;$ inicial há-de estar agora numa nova posição $\;F\;$ de $\;(E,\; s)\; $ e tal que o arco desta, $\; \widehat{DEF},\;$ há-de ter um comprimento igual ao arco $\;\widehat{BAD}=r\alpha\;$ ou seja $\; 3s\alpha .\;$ Mostra-se a trajetória descrita por $\; F\;$ residente fixo da circunferência $\;(E,\; s)\;$ rolante é uma epicicloide (já apresentada antes)
-
O reflexo de $\;F\;$ ao espelho $\;D\;$ é um ponto $\;G\;$ de uma circunferência reflexo de $\;(E,\;s)\;$ e tangente a $\;(A,\;r)\;$ no ponto $\;D\;$ que obviamente se desloca tangencialmente e interiormente a $\;(A\;r).\;$ O ponto $\;G\;$ assim determinado poderia obviamente ser determinado sem qualquer recurso às reflexões de cada um dos pontos $\;F\;$ relativamente a cada ponto (posição) $\;D\;$ que varia com $\; \alpha. \;$ O lugar geométrico dos pontos $\;G\;$ com a variação de $\;D \; \mbox{ou}\; \alpha \;$ é também mostrado. Pode usar a animação para ver os deslocamentos e os traços dos pontos $\; F\; \mbox{e} \;G.\;$ Para limpar esses rastos, clique no botão (à direita alta) de reiniciar.
Chamo a atenção que todos ângulos de rotação que transformam $\;B\;$ em $\;D\;$ ou $\;C\;$ em $\;E,;$ em torno de $\;A\;$ e $\;D\;$ em $\;F\;$ ou $\;D\;$ em $\;G\;$ em torno de $\;E\;$ têm o mesmo sentido, para além da igualdade das distâncias em arco percorridas relativamente a quaisquer duas posições de $\;D\;$ (ou dois valores de $\; \alpha\;$)por exemplo , $\;r\alpha\;$ de $\;B\;$ até $\;D\;$) ou duas posições de $\;F\;$ ou $\;G\;$ nas respetivas circunferências (por exemplo os arcos de $\;D\;$ a $\;F\;$ e de $\;D\;$ a $\;G\;$ têm comprimento $\; 3s\alpha = r\alpha).$ - Neste passo, experimentamos ver qual é a trajetória do ponto $\;H\;$ (reflexo de $\;F\;$ no espelho$\;AE\;$) em que são iguais as amplitudes dos ângulos $\;\angle D\hat{E}H\; $ e $\;\angle D\hat{E}F\;$ mas com sentidos opostos e, logo em que o ponto $\;H\;$ é obtido por rotação de $\;D\;$ em torno de $\;E\;$ segundo um ângulo igual mas de sinal ou sentido contrário ao sentido do ângulo da rotação de centro $\;A\;$ que nos leva de $\;B\;$ até $\;D\;$
- Finalmente, consideramos o ponto $\;I\;$ reflexo de $\;H\;$ ao espelho $\;D\;$ que é ponto da circunferência reflexo de $\;(E,\;s)\;$ no mesmo espelho $\;D\;$ e nos devolve mais uma das hipocicloides - curvas cíclicas assim obtidas: como trajetória de um ponto preso a uma circunferência (geratriz) que rola tangencial e interiormente a uma outra circunferência (directriz).
Subscrever:
Mensagens (Atom)