12.4.16

Construir um paralelogramo equivalente a um triângulo dado e com um certo ângulo


Para as próximas construções que vamos apresentar, além da entrada anterior (tansporte de ângulos) precisamos de lembrar algumas das entradas de 2015 (de 17.2.15 -- Igualdade n'Os Elementos de Euclides - contexto e não definido-- a 11.4.15 -- Retas tiradas de um ponto para um círculo: igualdade de áreas de retângulos (secantes) e quadrados (tangentes)) que são referidas ao conceito de igualdade em área de figuras planas.

A excursão então feita pelo livro I de "OS Elementos" introduzia os conceitos de área e equivalência com vista a demonstrar as proposições I.47 e I.48 (teorema de Pitágoras e seu recíproco) e alguns resultados de outros livros com o fito de resolver a construção de um pentágono regular inscrito num dado círculo (IV. 11). Algumas das proposições (mais problemas de construção) abordadas então são resultados de álgebra geométrica (?) que aparecem sugeridos por problemas de áreas e são demonstradas usando igualdades (em área entre figuras) e sua axiomática (?).


Vamos resolver problemas de construção em que se recorre ao transporte de ângulos e à noção de área de uma figura plana.
Proposição (I.42) Problema: Construir um paralelogramo com um dado ângulo e de área igual à de um dado triângulo.
(1) Dados um triângulo $\;[ABC]\;$ e um ângulo $\;\angle D\hat{E}F,\;$ construir um paralelogramo $\;[GHIJ]\;$ tal que $\; \angle J\hat{G}H= \angle D\hat{E}F\;$ e $\; [GHIJ]=[ABC] \;$ (igualdade em área).

Na figura que se segue, como dados temos um triângulo $\;ABC\;$ e um ângulo $\;\angle DEF,\;$ algumas ferramentas disponíveis (que agora incluem o compasso da nossa vida). Se não puder ou não quiser dar-se a esse trabalho, pode acompanhar a nossa resolução, fazendo variar os valores de $\;\fbox{n}\;$ no cursor ao fundo.



©geometrias, 10 abril 2016, Criado com GeoGebra

Sigamos os passos da construção, deslocando o cursor n.
  1. em cima(1)
  2. Começamos a tirar por $\;A\;$ uma reta paralela a $\;BC\;$ que se faz --(I.31)-- por transporte do $\;\angle C\hat{B}A\;$ para $\;A\;$ como vértice e do outro lado de $\;AB\;$.De modo análogo, tiramos por $\;C\;$ uma paralela a $\;BA\;$. O triângulo $\;ACG_1\;$ é geometricamente igual a (ou congruente com) $\;ACB\;$ e, por isso, têm áreas iguais e a área do paralelogramo $\;[ABCG_1]\;$ é dupla da ára do triângulo $\;[ABC]\;$ --(I.40)-- e,
  3. em consequência, $\;ABC\;$ é igual em área ao paralelogramo $\;GCG_1H_1\;$ em que $\;G\;$ é o ponto médio de $\;BC\;$
  4. Como esse paralelogramo é igual em área a todos os paralelogramos que tenham $\;GC\;$ como lado e outro sobre a paralela já tirada por $\;A\;$ -- (I.36) -- para obter um paralelogramo que satisfaça o requerido, bastará transportar o ângulo $\;\angle DEF\;$ para $\;GC.\;$ O segundo lado do ângulo de vértice em $\;G\;$ e primeiro lado $\; GC\;$ define $\;H\;$
  5. De modo análogo se obtém a paralela a $\;GH\;$ tirada por $\;C\;$ que determina sobre $\;AH\;$, o vértice $\;I\,$ em falta, do paralelogramo $\;GHIC\;$ igual em área ao triângulo $\;ABC\;$ em que um dos ângulos é igual ao ângulo dado.



    1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
    2. David Joyce. Euclide's Elements
    3. George E. Martins. Geometric Constructions Springer.ew York; 1997
    4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
    5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

7.4.16

Transporte de um ângulo: passos da construção: economia, método e razão. Existência.



A construção da entrada de 16 de Janeiro de 2014, intitulada
Com compasso e régua euclidianos, transferir distâncias
cria o conceito correspondente ao compasso actual, ao demonstrar que com circunferências (definidas por um ponto e um intervalo) e as retas (definidas por dois pontos) se podem transferir distâncias (segmentos), isto é construir um segmento congruente a outro. Este conceito de compasso, correspondente a uma série de operações com retas e circunferências, passa a ser usado em futuras construções.
A proposição I.23 dos "Elementos" trata da transferência de um ângulo. Pode enunciar-se: Dados um segmento $\,[AB]\;$ e um ângulo de vértice $\;D,\;$ e lados $\; DC, \; DE\;$ ou $\; \angle CDE\;$, construir um ângulo $\;\angle BAH\;$ congruente com $\;\angle CDE\;$
Habitualmente segue-se o esquema:
  1. $\;(D,\;r)\;$ e $\;(A, \; r)\;$ congruentes ($\;r\;$ qualquer)
    • $\;(D,\;r). \dot{D}C = {E}\;$
    • $\;(D,\;r). \dot{D}E = {F}\;$
    • $\;(A, \;r). \dot{A}B = {G}\;$
  2. $\;(G,\;EF)\;$
    • $\;(G,\;EF). (A,\;r|) = {\ldots, \;H}\;$
  3. $\;AH\;$
    • $\; AG =AH= DE=DF\;$ e
      $\; EF=GH\;$ -- cordas iguais correspondentes a arcos iguais de circunferências iguais (congruentes). $$\;(LLL) \rightarrow [GAH]=[EDF]\;$$ $$\angle BAH = \angle GAH = \angle EDF = \angle CDE$$
Resumindo: a transferência pedida exige quatro traçados: três circunferências (compasso novo) e uma reta (régua).


A construção que pode fazer a seguir com as ferramentas euclidianas (únicas fornecidas) segue o raciocínio que apresentámos e que se resume a transferir distâncias, como deve ter observado. Se não quiser fazer a construção, pode seguir as etapas da construção (baseadas no esquema descrito na entrada citada acima) fazendo variar os valores de $\; \fbox{n=i},\; i=1, 2, \ldots, \;6\; $





@geometrias, 7 abril 2016, Criado com GeoGebra

Sigamos os passos da construção, deslocando o cursor n. Procuramos determinar um ponto $\;H: \; \angle BAH = \angle CDE,\;$ usando só a circunferência e a reta, e a partir dos cinco pontos $\;A,\;B,\;C,\;D,\;E.$
  1. Partindo dos cinco pontos $\; A,\; B,\;C, \; D,\; E,\;$ começamos por transferir $\;AB\;$ para $\;\dot{D}C\;$ e $\;\dot{D}E\;$ a partir de $\;D\;$
    1. $(D,DA), \; (A, AD)$
      • (D,DA). (A, AD) --> P : ADP é um triângulo equilátero
    2. $\;(A,\;AB)\;$ e $\;AP\;$
      • $\;(A,\;AB).AP \rightarrow Q \;$ sendo $\;AQ= AB\;$
    3. $\;(P, PQ=PA+AQ)\;$ e $\;PD\;$
      • $\;(P, PQ=PA+AQ) . PD\; \rightarrow R$, sendo $\;PR=PD+DR =PQ=PA+AQ,\;$ é $\;DR=AB\;$
    1. $\;(D, \;DR)=(D, \;AB)\;$ e $\;DE, \; DC\;$
      • $\;(D, \;AB) . DC \rightarrow F \;$ sendo $\;DF=AB\;$
      • $\;(D, \;AB) . DE \rightarrow G \;$ sendo $\;DG=AB\;$
  2. Já temos $\;DCF=DEG= AB.\;$ Procuramos $\;H: \; BH=FG\;$ o que é o mesmo que transferir $\;FG\;$ para uma reta a passar e começando em $\;B\;$
    1. $\;(F, \;FB)\;$ e $\,(B, \;BF)\;$
      • $\;(F, \;FB) . (B, \;BF) \rightarrow S$
      • $\;BF=FS=SB \;$
    2. $\;(F, \;FG)\; $ e $\;SF\;$
      • $\;(F, \;FG) . \;SF \rightarrow T\;$ sendo $\;FT=FG\;$
    3. $\; (S, \; ST)\;$ e $\;SB\;$
      • $\; (S, \; ST) . SB \rightarrow U\;$ sendo $\;ST=SF+FT=SF+FG= SB+FG\;$ e $\;SU= SB+BU.\;$ E, em consequência, $\;BU=FG\;$ já que $\;ST=SU\;$
    4. $\;(A, \;AB)\;$ e $\;(B, \;BU)\;$
      • $\;(A, \;AB) . (B, \;BU) \rightarrow H\;$ sendo $\;BH=BU=FG\;$
      • E assim temos os ângulos $\;\angle BAH = \angle FDG =\angle CDE. \;\;\;\;\;\;\;\;\;\;$ □

    Comparando o trabalho feito com o compasso novo com este trabalho que recorre só ao compasso euclidiano, compreendemos um pouco melhor a genialidade na organização do estudo por Euclids, na construção de cada conceito (proposição-- problema de construção--, como prova de existência também de novas ferramentas). A partir de pontos, retas e circunferências a geometria de uma imensidão de construtíveis integrados… é um jogo que podemos jogar solitariamente, mas que partilhamos com prazer.


    1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
    2. David Joyce. Euclide's Elements
    3. George E. Martins. Geometric Constructions Springer.ew York; 1997
    4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
    5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.