21.7.14

Resolver problema de construção usando análise e síntese


Problema: Por um dos pontos de interseção de duas circunferências secantes, conduzir uma reta que determine nas duas circunferências um segmento de comprimento dado.
Vilela, António Lôbo. Métodos GeométricosMétodos Geométricos. Editorial Inquérito, Lda. Lisboa:1939
A publicação da resolução deste problema tornou-se necessária como parte da construção da resolução de um outro problema que entendemos dever publicar, como ilustração do método do problema contrário proposto no mesmo livro.
Pode seguir os passos da análise do problema fazendo variar os valores de $\;n\;$ entre 1 e 3 no cursor $\;\fbox{n}$. Para $\;n=4\;$ concluirá a primeira solução. Os valores $\;5\leq n\leq 8$ mostrarão a construção da segunda solução (para $\;P\;$, claro)
  1. Os dados deste problema são: um comprimento $\;s\;$, duas circunferências $\;(C)\;, \;(C')\;$ secantes e um ponto $\;P\;$ da interseção $\;(C).(C')\;$
  2. Supor o problema resolvido é considerar encontrado uma reta a passar por $\;P\;$ a cortar $\;(C)\;$ em $\;A\;$ e $\;(C')\;$ em $\;A'\;$ (para além de $\;P\;$), de tal modo que $\;AA'=s.\;$ Como podemos encontrar $\;A, \;A'$ ?
    Sabemos que $\;AA' = AP +PA', \;$ é soma de duas cordas, uma de cada circunferência.
  3. Os pontos médios $\;M\;$ e $\;M'\;$ respetivamente de $\;AP\;$ e $\;PA'\;$ são tais que
    • $\;A\;$ pode ser obtido como imagem de $\;P\;$ por meia volta de centro em $\;M\;$ e $\;A'\;$ pode ser obtido como imagem de $\;P\;$ por meia volta de centro em $\;M'\;$<\li>
    • $\;MM' =MP+PM'= \displaystyle \frac{1}{2}(AP+PA')=\frac{1}{2}(AA')= \frac{s}{2}\;$
    • $\; CM \perp AP \wedge C'M' \perp PA' \;$ e, por isso, $\;CM \parallel C'M'\;$ ou $\;[MCC'M']\;$ é um trapézio retângulo.

    Isto quer dizer que bastará determinar o ponto $\;D\;$ tal que     $\;CD \perp C'D \wedge C'D =MM'=\displaystyle \frac{s}{2}\;$
    que é o mesmo que dizer que $\;D\;$ é simultaneamente ponto da circunferência de diâmetro $\;CC'\;$ e da circunferência de centro $\;C'\;$ e raio $\;\displaystyle \frac{s}{2}\;$
  4. Com os dados do problema podemos determinar $\;D\;$. Como a reta $\;CD\;$ (ou $\;CM\;$ é perpendicular a $\;AA'\;$ e $\;C'D\;$ também é perpendicular a $\;CD,\;$ para obter a reta $\;AA'\;$ (ou $\;MM'\;$) basta tirar por $\;P\;$ a paralela a $\;C'D\;$

  5. © geometrias, 20 de Julho de 2014, Criado com GeoGebra


  6. Para a segunda solução, que existe no caso da nossa figura, começamos por determinar $\;D'\;$ como intersecção da circunferência centrada em $\;C\;$ e raio $\; \displaystyle \frac{s}{2}\;$ com a circunferência de diâmetro $\;CC'\;$ de modo que o triângulo $\;[CC'D']\;$ seja retângulo em $\;D'\;$
  7. A paralela a $\;CD'\;$ tirada por $\;P\;$ é a reta que procuramos. A reta $\;C'D'\;$ interseta esta paralela em $\;N'\;$ e a paralela a $\;C'D'\;$ tirada por $\;C\;$ interseta-a em $\;N.$
  8. A paralela a $\;CD'\;$ tirada por $\;P\;$ determina duas cordas $\;BP\;$ em $\;(C)\;$ e $\;PB'\;$ em $\;(C')\;$ das quais $\;N\;$ e $\;N'\;$ são pontos médios já que $\;CN \perp BB'\;$ e $\;C'D' \perp PB'$
  9. Como $\; \displaystyle \frac{s}{2}=CD' = NN',\;$ passando por $\;P, \;$ $\; BB' = BP+PB'= 2(NP+PN')=2NN'=\displaystyle 2\frac{s}{2}=s$     □
Nota sobre as condições de existência de soluções.
A existência de soluções depende de $\;D\;$. Vimos que $\;CD'=MM'=\displaystyle \frac{s}{2}\;$ ou $\;C'D =NN'=\displaystyle \frac{s}{2}\;$ são cordas da circunferência de diâmetro $\;CC'\;$ e, por isso, $\;CD'= C'D = \displaystyle \frac{s}{2} \leq CC'\;$. Assim só há soluções quando $\;s\leq 2CC'.\;$
Para $\;s= 2CC'\;$ (ou quando $\;s\;$ atinge o seu valor máximo), $\;AA'\;$ e $\;BB'\;$ são paralelas de $\;CC'\;$ tiradas por $\;P\;$, logo $\;AA'=BB'\;$ o que quer dizer que nesse caso há uma só solução.
Se $\;s <2CC', \;$ há duas direções para as secantes por $\;P\;$ e comprimento $\;s:\;$ $\;\;s=AA', \; AA'\parallel C'D\;$ e $\;s=BB', \; BB'\parallel CD'\;$ e, em consequência , pode haver duas soluções, no caso de cada uma das paralelas tiradas por $\;P\;$ a $\;C'D\;$ e a $\;CD'\;$ cortar as duas circunferências $\;(C), \; (C')\;$. No limite, estas direções podem ser a das tangentes $\;t, \; t'\;$ tiradas por $\;P\;$ a $\;(C)\;$ e $\;(C')\;$. Se conduzirmos por $\;C'\;$ paralelas a essas tangentes, elas determinam cordas, chamemos-lhe $\;u, \; u'\;$ na circunferência de diâmetro $\;CC'\;$ . Verifica-se que há uma só solução se $\; 2\times mín \{u,\;u'\} < s < 2\times máx \{u,\; u'\}\;$ e duas soluções quando $\; 2\times máx \{u,\; u'\} < s < CC'. $

16.7.14

Resolver problema de construção usando o problema contrário (2)


Enquanto íamos resolvendo problemas de construção como ilustrações de métodos de demonstração de teoremas de existência na geometria euclidiana, a partir de referências várias (Birkhoff, Eves, Cluzel, Vissio, Puig Adam, etc) António Aurélio foi sempre referindo manuais escolares do seu tempo de escola. Mais recentemente, referia a existência de um título - Métodos Geométricos - e um autor A. Nicodemos. O livro (ou livros) de Nicodemos devem estar guardados na biblioteca da Escola José Estêvão. Mas depois de verificarmos a sua existência no catálogo da Biblioteca Nacional, procurámos, encontrámos e apalpámos dois dos livros das memórias de Aurélio, disponíveis na Biblioteca do Departamento de Matemática da FCT da Universidade de Coimbra, para o que contámos com a ajuda de Jaime Carvalho e Silva.
Um deles é o Compêndio de Geometria de A. Nicodemos, J. Calado, referido na vinheta anterior (de 13/07/2014). O outro resolve o problema do título em memória. Chama-se Métodos Geométricos - Resumo e exercícios resolvidos de António Lôbo Vilela, publicado em 1939, e depósito na Livraria Sá da Costa. Lisboa. Ficamos a saber que Antónoio Lôbo Vilela publicara, antes deste, um volume sobre Métodos da Matemática. Da nota prévia a este volume, retirámos:
"Com a publicação do nosso volume sobre Métodos de Matemática com o intuito de apontar a orientação que nos parece mais conveniente ao ensino da matemática, por ser a única que a pode tornar compreensiva e lhe permite exercer a sua ação educativa. Pretendemos ainda mostrar que a lógica devia ser integrada nos programas de matemática, separando-a da filosofia a que arbitrariamente anda ligada e a deixa murchar, por falta de aplicação e de seiva. A amplitude e o objectivo desse trabalho não nos permitiram descer a certas minúcias de aplicação da metodologia da matemática que têm particular valor didáctico. Por isso nos decidimos agora a publicar este pequeno volume de iniciação,limitando o assunto aos Métodos Geométricos, única parte da metodologia da matemática que os actuais programas exigem, e dando-lhe um cunho mais acentuadamente prático(…)"
Deste manual escolar de António Lôbo Vilela, a propósito do método do problema inverso, citamos
Assim, quando se pretende construir uma figura que satisfaça a certas condições, entre elas a de ser inscrita, por exemplo, numa figura dada, é possível, em geral, desprezando esta condição de inscritibilidade, construir uma figura que satisfaça às restantes condições. Se for mais simples circunscrever a esta figura a figura dada ou uma figura semelhante a ela, há conveniência em empregar o método do problema inverso.
e escolhemos o primeiro dos exemplos que ALV escolheu para ilustrar o recurso ao método do problema inverso:
Problema:
Inscrever, numa circunferência de raio dado, um triângulo isósceles cuja base seja igual à altura
  1. No caso é mais fácil resolver o problema contrário do problema proposto. Assim, começamos por desenhar um qualquer triângulo isósceles de altura igual à base e determinar a circunferência a ele circunscrita (que é o mesmo que dizer em que o triângulo está inscrito)
  2. Para isso, tomamos um segmento qualquer $\;DE\;$ para base do triângulo isósceles.
  3. Para ser isósceles, a reta da altura é a mediatriz da base $\;DE\;$ . Assim se determina o terceiro vértice do triângulos isósceles - circunferência de centro no ponto médio de $\;DE\;$ e raio $\;DE\;$ interseta a mediatriz em dois pontos, qualquer dos dois pode ser $\;F\;$
  4. O circuncentro $\;O\;$ de $\;[DEF]\;$ é o ponto de interseção das mediatrizes dos lados do triângulo e a circunferência a ele circunscrita tem centro $\;O\;$ e raio $\;OD\;$

  5. © geometrias, 16 de Julho de 2014, Criado com GeoGebra


  6. Esta circunferência de centro $\;O\;$ e a passar por $\;D,\;E,\;F\;$ é homotética de qualquer outra circunferência. Desenhemos a circunferência $\;(O,\;r)\;$
  7. Há uma homotetia de centro $\;O\;$ e razão $\;\displaystyle k=\frac{r}{OD}\;$ que relaciona as duas circunferências e para a qual
    $$\begin{matrix} &\;{\cal{H}}(O, k)\;&&\\ (O,\; OD) & \longrightarrow & (O, \; r)&\\ D & \longmapsto & A:& \;\;\;OA=r=k.OD\\ E & \longmapsto & B.& \;\;\;OB=r=k.OE\\ F & \longmapsto & C:& \;\;\;OC=r=k.OF\\ DE & \longrightarrow & AB :&\;\;\; AB=k.DE\\ EF & \longrightarrow & BC :&\;\;\; BC=k.EF\\ DF & \longrightarrow & AC : &\;\;\; AC=k.DF \\ \end{matrix} $$ de onde se conclui que, por ser $\;DEF\;$ um triângulo isósceles de base igual à altura a ela relativa, $\;ABC\;$ é um triângulo isósceles de base igual à altura a ela relativa inscrito na circunferência $\;(O, \;r)\;$ satisfazendo as condições do problema proposto.