10.5.14

Resolver um problema de construção usando uma rotação e uma homotetia


Problema:     Inscrever um quadrilátero com determinada forma num semicírculo dado, em que um lado específico do quadrilátero inscrito esteja no diâmetro do semicírculo.

A construção a seguir ilustra a resolução do problema recorrendo a transformações geométricas.


© geometrias, 9 de Maio de 2014, Criado com GeoGebra


Deslocando o cursor $\;\fbox{k=1, ..., 10}\;$ ao fundo ao meio, pode seguir os passos da construção.
  1. São dados um quadrilátero $\;ABCD\;$ e um semicírculo de diâmetro $\;EF\;$; pretendemos obter um quadrilátero $\;A''B''C''D''\;$ semelhante ao dado e inscrito no semicírculo de tal modo que o lado $\;A''B''\;$ fique aposto ao diâmetro $\;EF$.
  2. Melhor será começar por ver em que semicírculo se inscreverá o quadrilátero $\;ABCD\;$, considerando $\;AB\;$ sobre o diâmetro. Tal semicírculo fica bem determinado pelo seu centro $\;G\;$, interseção da mediatriz de $\;CD\;$ com a reta $\;AB\;$ que contém o diâmetro.
  3. Já temos uma situação em tudo semelhante à que queremos ter no final. Para facilitar podemos efetuar uma rotação para que os diâmetros dos semicírculos fiquem paralelos. Pode ser feito de vários maneiras. Nós optamos por rodar o diâmetro $\;HI$, em torno de $\;I$
  4. Se rodarmos em torno de $\;I\;$ no sentido direto de um ângulo $\;\alpha\;$
  5. obtemos uma figura congruente com a anterior, sendo $\;IH'\; \parallel \;EF\;$
    A rotação $\;{\cal{R}}(O, \alpha)\;$ preserva os comprimentos:
    $\;A'B'=AB, \; B'C'=BC, \;C'D'=CD, \; D'A'=DA\;$
    e os ângulos:
    $\; D\hat{A}B =-D'\hat{A'}B', \; A\hat{B}C=-A'\hat{B'}C', \; B\hat{C}D=-B'\hat{B'}D', \; C\hat{D}A=-C'\hat{D'}A'$,
    sem considerarmos a orientação, $\; \hat{A} =\hat{A'}, \; \hat{B}=\hat{B'}, \; \hat{C}=\hat{B'}, \; \hat{D}=\hat{D'}\;$
  6. Bastará agora definir a transformação que faz corresponder $\;EF\;$ a $\;IH'\;$ que como sabemos é uma homotetia de centro $\;P = IE.H'F\;$ e de razão $$k=\frac{PE}{PI} = \frac{PF}{PH}$$ Claro que, por essa homotetia $\;{\cal{H}}(P, k)$, a $\;G'\;$ corresponderá $\;O\;$, centro do semicírculo dado.
  7. Pela homotetia definida, encontramos os pontos $\;A'', \;B''$ como $\;PA'.EF\;$ e $\;PB'.EF\;$ respetivamente
  8. e como a homotetia preserva a incidência, os pontos do semicírculo de diâmetro $\;H'I\;$ têm correspondentes sobre o semicírculo de diâmetro $\;EF\;$: $\;C'',\; D''\;$ estarão na interseção da semicircunferência dado com as retas $\;PC'\;$ e $\;PD''$.
  9. A composta $\;{\cal{H}}(P, k)\;\circ\;{\cal{R}}(O, \alpha)\;$ que estabelece as correspondências $\;A \longmapsto A''\; \wedge \; B \longmapsto B''\;$ faz corrresponder $\;AB\;$ a $\;A''B''$.
    E, do mesmo modo, $BC \longrightarrow B''C'', \;CD \longrightarrow C''D'',\;DA \longrightarrow D''A''$ sendo $$\frac{A''B''}{AB} = \frac{B''C''}{BC} = \frac{C'''D''}{CD} = \frac{D''A''}{DA}=k$$
  10. E como a homotetia também preserva os ângulos $$\hat{A''} =\hat{A}, \;\hat{B''} =\hat{B}, \;\hat{C''} =\hat{C}, \;\hat{D''} =\hat{D}$$ A solução para o nosso problema é o quadrilátero $A''B''C''D''\;$ com $\;A'', B''\;$ no diâmetro $\;EF\;$ e $\;C', \;D''\;$ na semicircunferência dada, com lados correspondentes proporcionais (cada um a cada um) e ângulos correspondentes iguais aos do quadrilátero $\;ABCD$

7.5.14

Resolver problema de construção usando homotetias


Problema:    Determinar os vértices de um triângulo de que se conhecem as posições de três pontos que dividem os três lados em razões dadas.

A construção a seguir ilustra a resolução do problema recorrendo a transformações geométricas.


© geometrias, 7 de Maio de 2014, Criado com GeoGebra


Deslocando o cursor $\;\fbox{k=1, ..., 10}\;$ ao fundo ao meio, pode seguir os passos da construção.
  1. São dados três pontos $\;D, \;E, \;F\;$ e quatro pares de números $\;(m, \;n),\;(p, \;q),\;(r, \;s),\;$.
    Para a nossa resolução, vamos designar os vértices do triângulo por $\;A, \;B, \;C\;$ e as retas (lados) por $\; a=BC, \;b=AC, \;c=AB\;$ e sendo
    • $\;D\;$ um ponto do segmento $\;BC$, tal que $\;\displaystyle \frac{BD}{DC}=\frac{m}{n}\;$ e, por isso, $$\begin{matrix} & \;{\cal{H}}\left(D, -\frac{m}{n} \right)\; \\ C &\longmapsto & B \\ \end{matrix} $$ em que $ \displaystyle \;{\cal{H}}\left(D, -\frac{m}{n} \right)\;$ é uma homotetia de centro em $\;D\;$ e razão $\displaystyle \;-\frac{m}{n}$
    • $\;E\;$ um ponto do segmento $\;CA$, tal que $\;\displaystyle \frac{CE}{EA}=\frac{p}{q}\;$ e, por isso, $$\begin{matrix} & \;{\cal{H}}\left(E, -\frac{p}{q} \right)\; \\ A &\longmapsto & C \\ \end{matrix} $$
    • $\;F\;$ um ponto do segmento $\;AB$, tal que $\;\displaystyle \frac{AF}{FB}=\frac{r}{s}\;$ e, por isso, $$\begin{matrix} & \;{\cal{H}}\left(F, -\frac{r}{s} \right)\; \\ B &\longmapsto & A \\ \end{matrix} $$
  2. Não sabemos onde estão os vértices $\;A, \;B, \;C\;$, mas podemos determinar facilmente as retas $\;a, \;b, \;c$. Por exemplo, tratemos da determinação de $\;c\;$ da qual, não conhecemos nem $\;A\;$ nem $\;B\;$, e só conhecemos $\;F\;$. Só precisamos de determinar um segundo ponto de $\;c$. Assim, $$\begin{matrix} & \;{\cal{H}}\left(E, -\frac{p}{q} \right)\;&&\;{\cal{H}}\left(D, -\frac{m}{n} \right)\;& \\ A &\longmapsto & C &\longmapsto & B\\ F&\longmapsto&F'&\longmapsto&F'' \end{matrix}$$ A transformação composta $\; {\cal{H}}\left(D, -\frac{m}{n} \right)\; \circ \;{\cal{H}}\left(E, -\frac{p}{q} \right)\;$ tal que $\;B\;\longmapsto\;A$ e $\;F \longmapsto F''$ garante que, sendo $\;F\in AB\;$, também $F'' \in c =AB=A'B'$, pois as homotetias preservam a incidência, e claro, a colinearidade.
  3. Temos assim a reta $\;c=FF''\;$ que conterá o segmento $\;AB\;$, de que ainda não conhecemos as posições dos extremos.
  4. $\;E\;$ é um ponto de $\;b=AC\;$. Para determinar um segundo ponto de $\;b\;$, seguimos o mesmo processo. Assim: $$\begin{matrix} & \;{\cal{H}}\left(D, -\frac{m}{n} \right)\;&&\;{\cal{H}}\left(F, -\frac{r}{s} \right)\;& \\ C&\longmapsto & B &\longmapsto & A\\ E&\longmapsto&E'&\longmapsto&E'' \end{matrix}$$ em que $\;E''\;$ é um ponto da reta $\;b\;$ já que $\;E\in CA\;$
  5. $\;b=EE''\;$
  6. Do mesmo modo, se determina um ponto $\;D''\;$ como correspondente de $\;D\;$ pela composta $$\begin{matrix} &\;{\cal{H}}\left(F, -\frac{r}{s} \right)\;& &\;{\cal{H}}\left(E, -\frac{p}{q} \right)\;&\\ A&\longmapsto&B&\longmapsto&C\\ D&\longmapsto&D'&\longmapsto&D''\\ \end{matrix}$$
  7. $\;a =BC\;$
  8. Finalmente, temos $\;A= b.c, \;B=a.c, \; C=a.b\;$
  9. e os lados do triângulo $\;BC, \;CA, \;AB\;$,
  10. divididos respetivamente por $\;D$, $\;E$, $\;F$
  11. em pares de segmentos $\;(\;BD,\;DC\;)\;$, $\;(\;CE,\;EA\;)\;$, $\;(\;AF,\;FB\;)\;$
  12. de razões $\;\displaystyle \frac{BD}{DC}=\frac{m}{n}\;$, $\;\displaystyle \frac{CE}{EA}=\frac{p}{q}\;$ e $\;\displaystyle \frac{AF}{FB}=\frac{r}{s}\;$
Pode deslocar na figura os cursores $\;m, \;n; \;p, \;q; \;r, \;s\;$ ou os pontos $\; D, \;E, \;F\;$ e ver o que acontece em cada caso de variação.