Mostrar mensagens com a etiqueta pentágono regular. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta pentágono regular. Mostrar todas as mensagens

3.10.14

Dois pentágonos e dois círculos numa circunferência


Problema: Observe a figura abaixo: Dois pentágonos iguais ABCDE e EFGHA de que os pontos C, D , F, G estão sobre uma circunferência azul; dois círculos vermelhos em que um deles está inscrito no triângulo BAH e outro tangente à circunferência azul, a DE e a EF.
Pede-se a relação entre os raios dos círculos vermelhos.

© geometrias, 1 de Outubro de 2014, Criado com GeoGebra


Clique no botão de mostrar e ocultar     [□auxiliares]    para tornar visiveis pontos e segmentos auxiliares e as designações que lhe foram atribuídas para acompanhar a descrição da construção e dos cálculos.

Como $\;AC=AD=AF=AG,\;$ a circunferência que passa por $\;C, \;D, \;F, \;G \;$ tem centro em $\;A\;$ e raio igual às diagonais dos pentágonos.
Cada um dos círculos vermelhos está inscrito num triângulo: o maior no triângulo $\;PEQ\;$, o menor em $\;BAH\;$ Para determinar a razão entre os raios dos círculos vermelhos, bastará determinar a razão de semelhança entre os triângulos em que se inscrevem. Por simples observação: dos ângulos $\;PEQ \sim FEQ\;$ e dos lados $\;FEQ =HAB\;$.
A altura do triângulo $PEQ$, pode ser calculada assim $$EJ= AJ - AE = AD-AE =\; \displaystyle \frac{\sqrt{5}+1}{2} AE - AE = \frac {\sqrt{5} -1}{2} AE, \;$$ porque a razão entre a diagonal $\;AD\;$ de um pentágono regular e o seu lado $\;AE\;$ é igual a $\; \displaystyle \frac{AD}{AE} = \frac{\sqrt{5}+1}{2}\;$ (número de ouro). A altura do triângulo $\;BAH\;$ relativa a $\;HB\;$ é metade da base do triângulo $\;AKB :\;\;\;\displaystyle AI=\frac{1}{2}AK\;$. Este triângulo $\;AKB\;$ é isósceles (e semelhante a $\;ACE):\; \, A\hat{K}B= B\hat{A}K = 180^{o}-B\hat{A}E = 72^{o}, \;\; \; K\hat{B}A = 36^{o}.\;$ Para o que interessa, dessa semelhança retira-se: $\; \displaystyle\frac{AB}{AK}= \frac{AC}{AE} = \frac{1+\sqrt{5}}{2},\;$ ou, para o que interessa, sabendo que $\;AB=AE\;$ $$\;AK = \frac{2AB}{\sqrt{5}+1}= \frac{2AE}{\sqrt{5}+1}$$ $$AI = \frac{1}{2} AK = \frac{1}{2}\times\frac{2AE}{\sqrt{5}+1}= \frac{AE}{\sqrt{5}+1} =\frac{AE \times (\sqrt{5} -1)}{(\sqrt{5} +1)\times (\sqrt{5} -1)} =\frac{\sqrt{5}-1}{4} AE $$ ou seja, a razão de semelhança $\;BAH \sim PEQ\;$ é 2, calculada pela razão das alturas $\; \displaystyle\frac{EJ}{AI}=2\;$ relativas aos lados $\;BH \;$ e $\;PQ\;$. Por isso, 2 é também razão entre os raios dos círculos vermelhos. O raio do círculo tangente à circunferência azul e aos lados $\;DE\;$ e $\;EF\;$ dos pentágonos tem comprimento duplo do raio do círculos vermelho tangente a $\;AH, \;HB, \; BA\; \;\;\; \; \square$
em Garcia Capitán, F. J. Resolución de problemas bonitos de Geometría con métodos elementales Priego de Córdoba, 2003 sugerido por António Aurélio Fernandes

3.1.06

uma ajuda? de presente em presente


Nunca pensámos em publicar a construção rigorosa do pentágono regular inscrito numa circunferência de raio dado (esta construção tem explicação matemática feita por A J Moreira Antunes na Gazeta da Matemática (SPM), depois de ter sido objecto de muita discussão por aqui na escola ao tempo da construção do dodecaedro - universo - que está no jardim). Aqui vai o desenho da coisa, em que M é ponto médio de OP, |MQ|=|MA| e |AQ|=|AB|... Penso que chega para se entender a construção.



Construir um pentágono regular inscrito numa circunferência de raio dado é assim.
E construir um pentágono regular de lado dado (lado 5, no caso)? Como determinar o círculo em que o pentágono se inscreve? E é preciso determinar um círculo?

Já agora! E construir, só com compasso!, os 5 pontos igualmente espaçados sobre uma circunferência dada? Como é?

Aqui fica a construção dinâmica de António Aurélio Fernandes, passados anos.....



[A.A.F.]