Mostrar mensagens com a etiqueta divisão harmónica. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta divisão harmónica. Mostrar todas as mensagens

20.2.10

Divisão harmónica, usando paralelas e secantes

Sejam A,B e C colineares, Podemos determinar o quarto harmónico D, fazendo passar por C uma recta concorrente CE qualquer e por A uma AE, e por B tirar uma paralela a AE, BF. Sobre esta BF, determinar um ponto G tal que |BG|=|BF|. EG intersecta AB em D.

Na construção dinâmica que se segue, pode deslocar A, B, C, E para observar a consequência das mudanças.




19.2.10

A divisão harmónica por outra via

Tomando um triângulo rectângulo em P de hipotenusa AB. Seja C de [AB]. Para D sobre AB tal que PB é a bissectriz do ângulo DPC, (A,B,C,D) é um quaterno harmónico. Segue a construção dinâmica correspondente, em que pode deslocar P, mantendo ABC e vendo que D se mantém invariante. Também pode variar A, B e C e verificando que se mantêm as razões harmónicas.... com D determinado, usando PC como bissectriz de CPD.


De outro modo, a divisão harmónica

As propriedades do quaterno harmónico da entrada anterior, particularmente, aquela que se refere ao facto de num quaterno harmónico (A,B;C,D), ser C o inverso de D relativamente à circunferência de diâmetro [AB] sugere que, tomados A,B e C, se pode obter o quarto harmónico D, usando a circunferência de diâmetro [AB].
Isso mesmo fica ilustrado na figura dinâmica que se segue.



15.2.10

A divisão harmónica é o que parece

Na figura dinâmica abaixo, (A,B;C,D) é um quaterno harmónico. Pode deslocar A e B, observando que:


  1. |CA|.|DB|=|CB|.|DA|

  2. Sendo J o ponto médio de CD,| JC|=|JD|, |AC|.|AD|=|AB|.|AJ| equivamente a

  3. 2/|AB|=1/|AC| +1/|AD| - relação de Descartes - que é o mesmo que

  4. |AB|=(2|AC|.|AD|)/(|AC|+|AD|) - |AB| é a média harmónica de |AC| e |AD|.

  5. Sendo I o ponto médio de AB, |IA|=|IB|, |IA|2= |IC|.|ID| - relação de Newton - e é claro que

  6. sendo J o ponto médio de CD, |JC|2=|JA|.|JB| ou: B é o inverso de A relativamente à circunferência de diâmetro |CD|






13.2.10

Divisão harmónica

Consideremos quatro pontos colineares A, B, C e D, em que apenas C está entre A e B. Dizemos que C divide o segmento AB em dois segmentos (CA e CB) na razão CA/CB. Do mesmo modo, podemos dizer que D divide o segmento AB em dois segmentos (DA e DB) na razão DA/DB. Quando DA/DB=CA/CB (aritmeticamente falando), dizemos que os pontos C e D separam harmonicamente A e B ou que C e D dividem harmonicamente o segmento AB naquela razão.
Também dizemos que C e D são conjugados harmónicos relativamente a A e B.
Claro que a relação DA/DB=CA/CB é equivalente DA.CB=DB.CA ou (DA/DB)/(CA/CB)=1 ou (CA/CB).(DB/DA)=1. Veremos outras relações em futuras entradas.

O que nos interessa hoje é ver (seguindo a figura dinâmica abaixo) que, se tomarmos dois pontos A e B e a partir de cada um deles tomarmos duas rectas (AG e AE; BG e BF) de tal modo que se forme um quadrilátero completo (A, B, [E, F, G, H]) as intersecções C e D das diagonais EH e GF com a recta AB dividem harmonicamente o segmento AB.





Na figura pode deslocar E para verificar que C e D se mantêm invariantes, apesar de mudar os lados do quadrilátero (por construção C não depende de G). Se deslocar G,(ou F) faz variar D e consequentemente C, que nas novas posições continuam a separar harmonicamente AB.