18.2.21

de uma colinearidade a outra e etc.


Consideremos três pontos colineares A, B, C incidentes na reta r (podem tomar diversas posições) e dois semicírculos: um - c - de diâmetro AB e outro - d - de diâmetro AC ambos num dos dois semiplanos determinados por r.
Seja D o ponto médio do segmento BC: BD=DC; e, tiradas por D,
  • a perpendicular a r - p - que intersecta d em E,
  • e a tangente a c - t - sendo F o ponto de tangência.
Finalmente, considerámos a reta i determinada por A e F.
A nossa figura leva-nos a conjecturar que
  1. os segmentos DF da tangente t e DE da perpendicular a r são geometricamente iguais
  2. o ponto E incide na recta i=AF, ou seja, A, E e F são colineares.
Pode demonstrar.

Cluzel, R. et Robert, J-P.   La Géométrie et ses applications  Lib. Delagrave, Paris.1964 - p. 136, ...

Sem comentários: