Trilátero abc e áreas de paralelogramos construídos sobre a, b, c exteriormente
Apresentamos a seguir uma construção dinâmica a ilustrar que há um paralelogramo em que um dos lados é BC equivalente à soma de dois paralelogramos construídos sobre os lados AB e AC exteriormente ao triângulo ABC
O enunciado do problema desta entrada é:
Construir (e demonstrar) que dado um triângulo $\;ABC\;$ qualquer e dois paralelogramos cada um sobre um de dois dos seus lados, por exemplo $\;AB\;$ e $\;AC,\;$ construídos exteriormente ao triângulo dado, construir um paralelogramo sobre o terceiro lado $\;BC\;$ cuja área seja igual à soma das áreas dos primeiros dois paralelogramos.
- Apresenta-se inicialmente um triângulo $\;ABC\;$ qualquer ($\;A, \;B, \;C\;$ livres no plano da construção)
- Sobre $\;AB\;$ aparece construído um paralelogramos $\;ABDE\;$ em que $\;D\;$ é um ponto qualquer no exterior de $\;ABC\;$ e no semiplano determinado por $\;AB\;$ sem pontos interiores de $\;ABC.\;$ O quarto ponto $\;E\;$ do paralelogramo é a interseção da paralela a $\;BD\;$ tirada por $\;A\;$ com a paralela a $\;AB\;$ tirada por $\;D\;$
- De modo análogo se construíu o paralelogramo $\;ACFG\;$ em que $\;F\;$ tem graus de liberdade num semiplano para o exterior de $\;ABC\;$ dos determinados por $\;AC.\;$
- A construção do paralelogramo $\;BCKL\;$ que é tal que
$$\;\mbox{Área de}\;\; [BCKL] = \mbox{Área de}\;\; [ABDE] + \mbox{Área de}\;\; [ACFG]\;$$
apoia-se exclusivamente na Proposição XXXV. PROB. do LIVRO I de “Os Elementos”: Os paralelogramos que estão sobre a mesma base, e entre as mesmas paralelas, são iguais.
- Como as retas $\;AB\;$ e $\;AC\;$ se intersetam em $\;A\;$ também as suas paralelas a $\;AB\;$ tirada por $\;D\;$ e a $\;AC\;$ tirada por $\;F\;$ se interseta, denominemos por $\;H\;$ o ponto $\;DE.FG$
- E se considerarmos os paralelogramos $\;ABB’H \;$ e $\;ACC’H\;\; (BB’ \parallel CC’ \parallel AH, \;$ pela proposição referida acima, verificam-se as equivalências: $\;[ABDE] \simeq [ABB’H]\;$ e $\;[ACFG] \simeq [ACC’H].\;$
- Repare-se que estes paralelogramos têm em comum um lado $\;AH\;$ com os mesmos comprimento e direção de $\;BB’\;$ e $\;CC’\;$
- Se tomarmos as retas $\;BB’\;$ e $\:CC’\;$ paralelas a $\;AH\;$ podemos considerar novos paralelogramos entre a reta $\;AH\;$ (que é a mesma que $\;MN\;$ em que $\;M\;$ é $\;AH.BC\;$ e $\;MN=AH\;$) por um lado e por outro $\;BL,\;$ ou $\;CK.\;$ Assim, recorrendo à Prop. XXXV, sabemos que $\;[ABB’H] \simeq [BLNM] \;$ e $\;[ACC’H] \simeq [CKNM].\;$
- Ora $\;[BLNM] \cup [CKNM] = [BCKL],\;$ que é um paralelogramo, e consideradas as equivalências confirmadas, em consequência $$\; \mbox{Área de}\;\;[BCKL] = \mbox{Área de}\;\;[ABDE] + \mbox{Área de}\;\;[ACFG]$$.
- Finalmente realçam-se os segmentos que são os lados dos diferentes paralelogramos auxiliares das demonstração e construção do paralelogramo $\;BCKL\;$ cuja área é igual à soma das áreas dos paralelogramos $\;ABDE\;$ e $\;ACFG.\;$ □
17 agosto 2017, Criado com GeoGebra
Cluzel, R.; Robert, J-P. La Géometrie et ses applications. (Enseignement Technique) Librairie Delagrave. Paris: 1964
Caronnet, Th. Éxércices de Géométrie -quatrième livre: Les Aires 4. éd.,Librairie Vuibert. Paris:1947
Sem comentários:
Enviar um comentário