Vamos nesta entrada prosseguir o trabalho iniciado nas entradas anteriores, construindo o lugar geométrico dos pontos equidistantes de duas circunferências $\;(O_1, \; r_1)\;$ e $\;(O_2, \; r_2)\;$ .
Sabemos que a distância de um ponto $\;P\;$ a uma circunferência $\;(O, \;r)\;$ é dada por
- $\;OP-r, \;$ no caso de $\;P\;$ ser exterior a $\;(O, \;r)\;$
- $\;r-OP\;$ se $\;P\;$ for interior a $\;(O, \;r)\;$
- $\;0\;$ se $\,P\;$ for um ponto de $\;(O, \;r)\;$
Os pontos $\;P\;$ equidistantes de duas circunferências $\;(O_1, \; r_1)\;$ e $\;(O_2, \; r_2)\;$ satisfarão as seguintes condições:
- Os pontos $\;P\;$ exteriores às duas circunferências e delas equidistantes satisfazem a condição $\;O_1P -r_1= O_2P -r_2\;$ equivalente a $$O_1P - O_2P = r_1-r_2\; \mbox{ou}\; O_2P - O_1P = r_2 - r_1$$ ou pontos de uma hipérbole de focos $\;O_1, \; O_2\;$ com segmento de eixo transverso de comprimento $\;|r_1 - r_2|\;$
- Os pontos $\;P\;$ exteriores a $\;(O_1, \;r_1)\;$ e interiores a $\;(O_2, \; r_2)\;$ delas equidistantes satisfazem a condição $\;O_1 P - r_1 =r_2 - O_2P\;$ equivalente a
$$ O_1P + O_2P = r_1+ r_2$$
ou pontos de uma elipse de focos $\;O_1, \;O_2\;$ e eixo maior de comprimento $\;r_1+r_2\;$.
Como é óbvio, os pontos interiores a $\;(O_1, \;r_1)\;$ e exteriores a $\;(O_2, \; r_2)\;$ satisfazem a mesma condição. - Os pontos interiores a ambas as circunferências e delas equidistantes satisfazem a condição $\;r_1 - O_1P =r_2 - O_2P\;$ equivalente a $$O_1 P-O_2P = r_1-r_2 \; \mbox{ou} \; O_2P - O_1P = r_2-r_1 $$ ou pontos de uma hipérbole de focos $\;O_1, \;O_2\;$ e segmento de eixo transverso de comprimento $\;|r_1 -r_2|\;$
Na construção que apresentamos a seguir, tomamos duas circunferências de raios (6 e 2) diferentes, sendo os centros pontos livres no plano. pretendemos ilustrar o que atrás concluímos e não percorrer exaustivamente todos os casos que diferentes situações relativas das circunferências ou a comparação entre os raios (por exemplo não tomamos circunferências de raios iguais).
© geometrias, 17 de Dezembro de 2014, Criado com GeoGebra
Ao alto da construção temos dois segmentos: $\;AB = r_1 + r_2\;$ e outro $\;EF = |r_1 - r_2|:$
- O ponto $\;S\;$ livre em $\;AB\;$ divide este em dois $\;AS\;$ e $\;BS\;$ que permite, por interseção de circunferências centradas em $\;O_1, \; O_2\;$ e de raios $\;AS, \;BS, \;$ determinar pontos cuja somas das suas distâncias a $\;O_1\;$ e $\;O_2\;$ seja constante igual a $\;r_1 + r_2\;$
- o ponto $\;D\;$ colinear com $\;E, \;F\;$ exterior a $\;EF\;$ determina dois segmentos $\;DE\;$ e $\;DF\;$ tais que $\;DE - DF = |r_1-r_2|\;$ que permitem, por sua vez, por interseção de circunferências centradas em $\;O_1, \;O_2\;$ e raios $\;DE, \;DF, \;$ determinar pontos tais que as diferenças das suas distâncias aos centros $\;O_1, \;O_2\;$ é constante e igual a $\;|r_1 - r_2|\;$
A janela inicial ilustra o caso de duas circunferências mutuamente exteriores. Fazendo deslocar qualquer dos centros pode ir vendo, para as diferentes posições relativas das duas circunferências, as curvas que vão aparecendo e discutir para cada uma delas se se trata do lugar geométrico dos pontos equidistantes às duas.
Pode sempre voltar à configuração inicial clicando sobre o "botão na direita alta" e clicando no botão $\;\fbox{|>}\,$ na esquerda baixa, que movimenta $\;S,\; D, \;$ pode acompanhar o traçado das diversas curvas pelos pontos $\;P, \;Q\;$ construídos pelo processo descrito.
Sem comentários:
Enviar um comentário