Temos três pontos $A, B, C$ colineares. Procuremos definir a inversão que transforma $A, B, C$ em $A', B', C'$ de tal modo que $A'B' = B'C'$
Para definir uma inversão, precisamos do centro e do raio da circunferência de inversão.
- Como os pontos $A, B, C$ são colineares (sobre uma reta $a$). os seus inversos $A', B', C'$ ou são colineares ou são concíclicos.
- Para que $A'B'$ e $B'C'$ sejam ambos segmentos de reta é necessário que $O$ seja colinear com $A, B, C$ ($O \in a$) e, em consequência, sobre $a$ também estarão $A', B', C'$, sendo $OA \times OA' = OB \times OB' = OC\times OC' =r^2$ se chamarmos $r$ ao raio da circunferência $(O)$ de inversão.
- Qualquer que seja $O$ de $a$, para $A$ e $B$ de $a$, $\overrightarrow{OA} =\overrightarrow{OB} + \overrightarrow{BA}$ e $\overrightarrow{OB'}=\overrightarrow{OA'}+ \overrightarrow{A'B'}$ e
$$\overrightarrow{OA}.\overrightarrow{OA'}= \overrightarrow{OB}.\overrightarrow{OB'}$$ $$(\overrightarrow{OB} + \overrightarrow{BA}).\overrightarrow{OA'} =\overrightarrow{OB}.(\overrightarrow{OA'}+ \overrightarrow{A'B'})$$ $$\overrightarrow{AB}.\overrightarrow{OA'}=\overrightarrow{OB}. \overrightarrow{A'B'}$$ $$A'B' = \frac{AB\times OA'}{OB} = \frac{AB\times r^2}{OA\times OB}$$ Do mesmo modo, se relaciona $B'C'$ com $BC$: $$B'C' = \frac{BC \times r^2}{OB\times OC}$$ - Ser $A'B'= B'C'$ é o mesmo que $$ \frac{AB\times r^2}{OA\times OB}=\frac{BC \times r^2}{OB\times OC}$$ ou seja, $$\frac{AB}{OA}= \frac{BC}{OC} \;\;\mbox{ou} \;\; \frac{OA}{OC}= \frac{AB}{BC}$$ Ora a igualdade $$\;\;\displaystyle \frac{OA}{OC}= -\frac{BA}{BC}\;\;\;$$ verifica-se para o ponto $O$ de $a$ que é conjugado harmónico de B, relativamente a $AC$: $$(O, B; A, C)=-1$$
Para seguir os passos da construção, desloque o cursor $\;\fbox{ n }\;$
Sem comentários:
Enviar um comentário