23.4.07

Polaridade

Polar de um ponto em relação a duas rectas

Tomemos um ponto P e duas rectas r e r' concorrentes em O. Façamos passar por P uma recta s que intersecta r e r' em A e B; determinemos o conjugado harmónico, P', de P em relação a A e a B: (PP'AB) = -1.
Qual será o lugar geométrico dos pontos P' conjugados harmónicos de P em relação aos pontos A e B quando s varia?
Demonstra-se que é uma recta d´definida por P' e O. Diz-se que d' é a polar do ponto P em relação às rectas r e r'.





Se a polar de P passa por P', a polar de P' passa por P.

Considerámos duas rectas concorrentes. Se as rectas são paralelas mantém-se o que foi dito.

Polar de um ponto em relação a uma circunferência

Tomemos um ponto P e uma circunferência (c). Façamos passar por P uma secante s à circunferência; sejam A e B os pontos de intersecção. Determinemos o conjugado harmónico P' de P em relação a A e B. Para toda a secante por P à circunferência é possível determinar o conjugado harmónico P' de P em relação aos pontos de intersecção. Demonstra-se que o lugar geométrico de tais conjugados harmónicos é uma recta p que se diz polar de P em relação à circunferência; P é o polo de p.





Para determinar a polar de P, basta fazer passar por P duas secantes e determinar os dois conjugados harmónicos de P. Claro que se traçarmos as tangentes ªa circunferência por P, a polar é definida pelos pontos de tangência.

Considerámos o ponto P exterior à circunferência. Se P for interior, a polar será uma recta exterior.

Se P é ponto da circunferência, a sua polar é a tangente à circunferência em





Um exemplo notável de polo e polar: já foi referido que, na elipse e na hipérbole, cada directriz é a polar do foco correspondente em relação ao círculo principal.

Pontos conjugados em relação a uma circunferência: A e B são conjugados se a polar de cada um passa pelo outro.
Rectas conjugadas em relação a uma circunferência: a e b são conjugadas se o polo de cada uma pertence à outra.

20.4.07

A razão positiva

Se a razão dupla anarmónica (ABCD) = k for positiva, C e D não separam A e B, que é o mesmo que dizer que C e D ou estão ambos entre A e B ou ambos fora do segmento [AB].
Para determinar um quaterno anarmónico de razão dupla positiva, por exemplo, (ABCD)=1/4, basta fazer uma construção semelhante à que fizemos no artigo anterior, mas em que tomamos sobre a recta tirada por A dois segmentos 4 para 1 num dos semiplanos definidos pela recta dos pontos AB.
Assim:



Na nossa construção pode fazer variar a recta m e os pontos A, B e C.

19.4.07

Razão anarmónica

Até agora temos vindo a considerar casos de divisão e separação harmónica em que a razão dupla de quatro pontos colineares (ABCD) =(|AC|/ |BC|) / (|AD|/ |BD|)= 1, (ou -1, considerando os vectores).

Podemos considerar casos de divisão e separação não harmónica em que a razão dupla (ABCD)=k diferente de -1. Dizemos que tal razão é anarmónica. Interessante é saber determinar o quarto anarmónico, isto é, determinar sobre uma recta r, o ponto D assim relacionado com A, B e C: |AC|/|BC| = k. (|AD|/|BD|). Para o exemplo de construção que se segue, consideramos k=2 (k=-2, se considerássemos os vectores).




Por A fazemos passar uma recta m qualquer em que marcamos dois segmentos na razão 2 para 1. Com o extremo do segmento 2 (de m) e o ponto C definimos uma recta n; n intersecta a recta p paralela a m tirada por B. Unindo esta intersecção (de m com p) ao extremo do segmento 1 de m, definimos uma recta que intersecta r no ponto D.

Nota: No caso da nossa construção, não haverá ponto próprio D, correspondendo a um ponto C que seja tal que |AC|=2.|BC|.

Etiquetas:

18.4.07

Feixes harmónicos

Se tivermos quatro pontos - A, B, C e D - colineares e tais que (ABCD)=-1, dizemos que um feixe de rectas paralelas ou concorrentes que passem por eles é um feixe harmónico e convencionamos escrever O(ABCD)= (abcd)=-1.



Um exemplo simples e interessante de feixe harmónico é constituído por dois lados de um triângulo e as bissectrizes do ângulo formado por esses dois lados.

Harmonia que se projecta

Se na recta r, C e D separam harmonicamente A e B, (ABCD)=-1, os seus transformados, por projecção de centro O sobre s, são tais que C' e D' separam harmonicamente A' e B'.



A razão harmónica é invariante por projecção (seja ela paralela, seja central). No caso, pode verificar que a razão harmónica se mantém invariante, quando desloca O (muda o centro da projecção), quando desloca S (faz variar a recta s), e ainda quando deslocar A, B ou C sobre a recta r.

Etiquetas: , ,

17.4.07

Harmonia que se projecta

Se na recta r, C e D separam harmonicamente os pontos A e B, as imagens por projecção paralela sobre s, C' e D' separam harmonicamente os pontos A' e B'.




Na construção, pode deslocar os pontos A,B e C sobre r, bem como P fazendo variar s.

12.4.07

Quadrilátero completo

Chamamos quadrilátero completo à figura formada por 4 rectas (lados) que se cortam duas a duas, de tal modo que haja 6 intersecções (vértices). Às 3 rectas definidas por vértices não consecutivos, damos o nome de diagonais e ao triângulo por elas formado, damos o nome de triângulo diagonal.



E, como é óbvio, cada diagonal é dividida harmonicamente pelas outras duas.
Claro que se movimentar A até que P seja o ponto médio de [AB], verá que CE fica paralelo a AB e deixamos de ter o triângulo diagonal (Q está no infinito ou, se quisermos, é um ponto impróprio). Dito de outro modo, não falamos do conjugado harmónico de P relativamente a A e a B, se P for ponto médio de [AB] ( se fosse |AP|=|BP|, para haver conjugado harmónico de P relativamente a A e B, teria de haver em AB um ponto Q fora de [AB] tal que |AQ|=|BQ|).

Etiquetas:

4.4.07

Conjugados harmónicos, com régua

Sejam [AB] e P de [AB]. A partir de A e B construimos um quadrilátero completo de vértices A, B, C, D, E e F obrigando a que uma diagonal passe por P (E tem de ficar determinado sobre a recta PC). A outra diagonal DF intersecta AB em Q, que é o conjugado harmónico de P relativamente a A e B.



Na figura, pode movimentar o ponto C e verificar que as mudanças no quadrilátero não influenciam e para um ponto fixo P há um só conjugado Q. Movimentando o ponto P verifica que as variações de comprimentos dos vectores não prejudicam a igualdade das razões. Para cada ponto P há um conjugado Q relativamente a A e B.
Claro que também pode movimentar A e B e verificar que para cada par (A,B) há um conjugado de P.


À margem:
Estas entradas sobre divisões harmónicas resolvem problemas de divisão e multiplicação de segmentos (em linha).
Se P e Q são conjugados harmónicos relativamente a A e B, |AP|/|BP|=|AQ|/|BQ|. Por exemplo, dizer que |AP|/|BP|=3 é o mesmo que dizer |AB|=4|BP| e determinar o conjugado de P é determinar um ponto Q tal que |AQ|=3|BQ|.
|AB|=|AQ|-|BQ|=2|BQ|, logo |AQ|=1,5|AB|

Etiquetas:

Conjugados harmónicos, com régua e compasso.

Sabendo que as bissectrizes do ângulo C de um triângulo [ABC] determinam sobre AB conjugados harmónicos relativamente a [AB], podemos tratar de encontrar um processo geral para determinar o conjugado de um ponto qualquer da recta AB relativamente a A e B.

Tomando a mediatriz de [AB] e uma circunferência que passe por A e B, bem como o diâmetro [MN] sobre a mediatriz , a recta que passa por M e qualquer ponto P entre A e B é a bissectriz de um ângulo ACB, em que C é um ponto de MP sobre a circunferência. A recta NC é bissectriz externa do mesmo ângulo e, por isso, intersecta AB em Q que é o conjugado de P. De modo análogo, podemos partir de um ponto exterior a [AB] unindo-o a N para determinar o seu conjugado relativamente a A e B.




Na figura, pode movimentar o centro O da circunferência e verificar que para um ponto fixo P há um só conjugado Q. Ao movimentar o ponto P verifica que para cada ponto P há um conjugado Q. Pode também movimentar A e B.

Etiquetas:

harmonia triangular

Seja o triângulo [ABC] e as bissectrizes interna e externa do ângulo C que intersectam a recta AB em P (entre A e B) e Q. Estão dados os comprimentos |PA|, |PB|, |QA| e |QB|, para verificar que |PA|/|PB|= |QA|/|QB|. Pode mover os potos A, B sobre a recta r e C livremente na folha. Constatará que as razões se mantém iguais.




Quando há esta relação de igualdade entre as razões |PA|/|PB| e |QA|/|QB|, dizemos que é harmónica a separação operada por P e Q no segmento [AB] e que P e Q são conjugados harmónicos relativamente a A e B.

Etiquetas:

Para continuar as cónicas mais adiante

Só aparentemente é que vamos interromper a série de propridades e exercícios sobre cónicas. Para continuar esse trabalho, sentimos necessidade de fazer algumas viagens por conceitos que não são leccionados nas escolas portuguesas e são, por isso, estranhos à maioria dos leitores portugueses deste "blog".
Cónicas, até já!

Em busca da hipérbole IV

Traçar uma hipérbole de que se conhece um ponto Q, uma assíntota a1 e uma directriz d1.


Etiquetas: , ,

2.4.07

Em busca da hipérbole III

Traçar uma hipérbole de que se conhece um ponto Q, uma assíntota a1 e as duas directrizes, d1 e d2.

Etiquetas: , ,

30.3.07

Em busca da hipérbole II

Determinar uma hipérbole de que se conhecem dois ponto P e Q, uma direcção assíntótica a1 e a directriz d1.



Etiquetas: , ,

Em busca da hipérbole I

Apresentadas algumas propriedades das hipérboles, é altura de procurarmos uma ou outra a partir de alguns elementos.

Determinar a hipérbole que passa pelo ponto P, admite a1 como assíntota e tem F1 como foco.




Etiquetas: , ,

2014
EUCLIDES
Instrumentos e métodos

de resolução de problemas de construção