25.6.06

Dividir um triângulo em dois, de outro modo.

Determinar [DE], paralela a AB, que divide [ABC] em dois polígonos equivalentes


Dividir um triângulo em dois

Vamos dividir um triângulo em dois polígonos equivalentes por uma recta perpendicular a um dos lados? Vamos.

Como determinar [DE] perpendicular a AB que divida [ABC] em dois polígonos equivalentes
  1. Tomámos um triângulo de vértices A, B, C e lados a=BC, b=CA e c=AB. Considerámos também um ponto U e por ele, uma reta r paralela a c. Pode mover o ponto U e com ele a reta r.
  2. Considerado o ponto M médio de AB, tomámos a circunferência de centro U e raio AM ou MB e o ponto P um dos pontos comuns a r e (U, MB).
  3. E o ponto Q de r: PQ=BHc, sendo H_c o pé da perpendicular a AB tirada por C:
    CH_c é uma altura do triângulo [ABC] sendo a área deste metade de AB*CHc.
    Q é um dos dois pontos comuns a r e à circunferência (P, BHc)

  4. A circunferência de diâmetro QU tem centro R: RU=UQ.
    E é intersectada em S pela perpendicular a (r ou a ) AB tirada por P.
  5. A circunferência de centro B e raio PS intersecta BA em D, ou seja BD=PS e a perpendicular a AB tirada por D intersecta BC em E que, os calculados BD*DE e da figura DBE nos leva a pensar (conjecturar) que é esta DE (assim determinada) quem divide ABC em dois polígonos [ADEC] e [DBE] equivalentes.
  6. ?

[A.A.M]

24.6.06

Partindo um quadrilátero em dois...

Há um mês atrás, a 24 de Maio, tínhamos proposto alguns problemas de divisão em partes equivalentes. Voltamos a eles como propostas de exercícios interactivos. Manda o culto mariano que o último deles, de aparência simples, seja o primeiro. Assim seja:

Determinar E (sobre [AB]) tal que [DE] divide o quadrilátero [ABCD] em dois polígonos equivalentes.


Vejamos então a resolução (proposta por Mariana Sacchetti)

Traçámos as retas AB e DB. Por C traçámos uma reta paralela a DB que interseta AB em F.

Os trângulos [DBC] e (DBF] têm a mesma área pois têm a mesma base [DB] e a mesma altiura, distância entre as retas paralelas DB e CF.

Então, o quadrilátero [ABCD] e o triângulo [ADF] são polígonos equivalentes.

A mediana [DE] do triângulo [ADF] divideo-o em dois triângulos equivalentes, logo divide o quadrilátero [ABCD] em dois polígonos equivalentes.

8.6.06

Terceiro despertar dos geómetras.

Para obtermos o incentro de um triângulo [ABC] temos de traçar, como é sabido, as bissectrizes dos ângulos internos do triângulo: obtemos um ponto, habitualmente designado por I - incentro, que tem esta propriedade de ser equidistante dos três lados. Desenhamos assim uma circunferência de (in-)raio r - círculo inscrito - tangente aos três lados do triângulo.
Pois bem, é possível desenhar mais três circunferências tangentes aos três lados, agora externamente ao triângulo - círculos exinscritos. Para obter, por exemplo, o círculo exinscrito no ângulo de vértice A, basta traçar as bissectrizes externas dos ângulos com vértices em B e C. Designaremos por Ia, Ib, Ic os centros das três circunferências exinscritas.
Notas: A bissectriz interna do ângulo em A passa por I e por Ia, a bissectriz interna do ângulo em B passa por I e por Ib, a bissectriz interna do ângulo em C passa por I e por Ic. As bissectrizes interna e externa de um ângulo são perpendiculares.


[A.A.F.]
Propriedades.

  • A área de um triângulo é dada pelo produto do semi-perímetro pelo raio r do círculo inscrito.


  • As circunferências BCIa, CAIb, ABIc intersectam-se em I.


  • Os pontos Ia, Ib, Ic formam um triângulo que tem por alturas as bissectrizes dos ângulos internos.


  • Os pontos médios dos segmentos que unem cada exincentro ao incentro pertencem ao círculo circunscrito.


  • ra + rb + rc= r + 4 R (r: in-raio; I: incentro; R: circum-raio; O: circuncentro; ra: exin-raio, etc)


  • |OMa| + |OMb| + |OMc|= r+R


  • |OI|2 = R (R -2 r)


  • |OIi|2= R (R + 2ri), em que i = a, b, c.


  • A potência do incentro em relação ao círculo circunscrito é dada por 2rR.


  • A potência de cada exincentro em relação ao círculo circunscrito é dada por 2ri R, com i = a, b, c.


  • Seja T1 o ponto de tangência do círculo inscrito com AB e T2 o ponto de tangência do círculo exinscrito no ângulo de vértice A com AB e seja p o semi-perímetro do triângulo. Demonstra-se que:
    |AT2| = p,    |AT1| = p - |BC| e |T1T2| = |BC|.


  • B e C estão sobre a circunferência de diâmetro [IIa]

    [A.A.F.]



    António Aurélio Fernandes informa:
    Estas notas ajudam a resolver os exercícios 213, 214, 279, 373, 385 do Geometriagon