9.11.18

Roda a rolar tangencialmente e pelo exterior de outra roda


O problema que sugeriu a abordagem do estudo das trajectórias de pontos de uma roda quando ela roda, sem deslizar, tangencialmente a outra roda foi sugerido pelo enunciado
Suppose a círcle of radíus r uníts Is rolled around the outsíde of a clrc1e of radius R uníts, R> r. If a marking instrument is attached to the smaller círcle at a particular poínt P, then the pattern created by this markíng instrument and the statíonary large circle will be that of a stylízed, petaled flower, provided r and R are related ln a special way. What is this specíal way in which r and R must be related in arder that there will be no "partial petals"?
lido da pagina 17 de Geometry / Axiomatic Developments with Problem Solving de Earl Perry, (publicado pela Marcel Dekker, Inc. NewYork:1992)




Tomemos uma circunferência de centro $\;A\;$ raio $\;2\;$ e, sobre ela, um ponto $\;B.\;$ Tomemos outra circunferência tangente à primeira em $\;B.\;$ Nesta entrada, consideremos esta circunferência de centro $\;C\;$ e de raio $\;2.\;\; C,\; B,\; A\;$ são colineares e $\;CB=BA=2,\;$ que constituem os elementos de uma partida e chegada da experiência para estudo da trajectória de um ponto $\;B\;$ fixo de $\;(C,\;2)\;$ quando acompanha esta na sua deslocação tangencial a $\;(A,\;2)\;$

Quando a circunferência $\;(C, \;2)\;$ rodar em torno de $\;A\;$ de um ângulo $\; \alpha, \;$ tangencialmente percorre um arco de comprimento $\;2\alpha\;$ enquanto o seu centro $\;C\;$ percorre um arco de $\;\;(A, \;4)\;$ de comprimento $\;4.\alpha.\;$ Considerada $\;(C, \;B)\;$ a posição inicial, após rodar $\;\alpha\;$ em torno de $\;A\;$ ocupa uma posição $\;(C',\;T)\;$ em que $\;T\;$ é o novo ponto de tangência das duas rodas $\;(A, \;2),\;$(posição fixa) e $\;(C, \;2)\;$ (posição variável tangente à primeira). Ao rodar sem arrastamento, $\;B\;$ de $\;(C,\;2)\;$ passa à posição $\;F\;$ de $\;(D,\;2)\;$ (correspondente à posição $\;E\;$ de $\;(C, \;2)\;$ caso esta rodasse em torno de $\;C\;$ sem mudar de posição, o que é o mesmo que dizer sem rolar, já que o ponto de tangência manter-se-ia na posição do ponto $\;B\;$ de $\;(A, \;2).\;$) Dizer que $\;(C, \;2)\;$ rola sem deslizar tangencialmente a $\;(A, \;2)\;$ é dizer que as posições dos pontos de tangência $\;T\;$ ocupam um arco $\; \widehat{BOT}\;$ da circunferência $\;(A, \;2]\;$ de comprimento igual ao dos arcos $\; \widehat{BCE}\;$ de $\;(C,\;B)\;$ e $\; \widehat{TC'F}\;$ de $\;(C',\;2)\;$ que, para cada valor de $\;\alpha, \;$ é, no caso da nossa construção, $\; 2\alpha .\;$

Na nossa construção dinâmica, abaixo apresentada, pode deslocar o cursor (esquerda alta) para variar o ângulo $\;\alpha \;$ de rotação e ver a evolução do rolamento e do comportamento de $\;(C')\;$ e dos seus pontos. E pode sempre limpar o desenho, clicando no botão de reiniciar na direita alta






O que nos interessa será ver a trajectória do ponto $\;F\;$ (variável com as posições $\;(C',\;T),\;$ cada uma delas correspondente a um dos valores de $\;\alpha\;$ em $\;[0, \; 2\pi],\;$ no caso da nosssa construção).

Na esquerda baixa
  • Os botões $\;\fbox{  >  }\; \mbox{e} \;\fbox{  ||  } \;$ permitem animar o rolamento e fazê-lo parar em qualquer momento.
  • Clicando sobre a caixa $\;\fbox{   \\   }\;$ obtém o lugar geométrico dos pontos $\;F\;$ (em função de $\; \alpha\;$) e
  • verificar que, no caso deste rolamento em que ambas as circunferências têm o mesmo raio, ao fim de uma volta completa - $\; 0 ≤\alpha ≤ 2\pi \;$ - $\;F\;$ parte de $\;B\;$ e chega a $\;B\;$ sem tocar noutro ponto de $\;(A, \;2)\;$ o que significa que se obtém uma flor em volta de $\;(A)\;$ de uma só pétala……… inteira e cordial
    em forma de coração ou cardióide.

23.10.18

Cicloides- 3


Tomámos uma circunferência de centro $\;A\;$ tangente a uma linha reta num ponto $\;O\;$ - ponto de partida para a circunferência de raio $\;\overline{AO}.\;$ Estes pontos de partida representam as posições iniciais.

$\fbox{1.}\;\;$ A roda circular (circunferência e círculo) vai rolar sobre uma linha reta $\;r\;$ que sabemos passar por $\;O.\;$ Quando consideramos a rotação de um ângulo $\;\alpha\;$ em torno de cada posição de $\;A\;$ as novas posições de $\;(A,\;O)\;$ serão $\;(A',\;P)\;$ tais $\; \overline{AA'} = \overline{OP}= \overline{AO} \times \alpha \;$ comprimentos de segmentos de retas paralelas, sendo $\;P\;$ o novo ponto tangência da roda com a estrada $\;r\;$ e sobre a nova circunferência $\;(A',P)\;$ a posição correspondente a $\;O\;$ será um ponto $\;O''\;$ tal que $\; \angle P\hat{A'}O'' = \alpha,\;$ ou seja, o arco $\;\widehat{PA'O''},\;$ da circunferência $\;(A',P)\;$ correspondente a um ângulo ao centro de $\;\alpha\;$ radianos, terá comprimento $\overline{AO} \times \alpha = \overline{A'O'} \times \alpha =\overline{AA'}=\overline{OP}.\;$
As posições $\;O''\;$ descrevem uma curva a que chamamos ciclóide. Pode visualizar o comportamento das posições desse ponto, fazendo variar os valores em radianos de $\;\alpha \;$ no selector na direita alta da janela da construção e pode também ver essa curva apresentada como lugar geométrico, o terceiro do quadro de lugares geométricos na direita baixa


$\fbox{2.}\;\;$ Um ponto $\;B\;$ solidário com a circunferência $\;(A,\;O),\;$ no sentido de acompanhar as dores e as deslocações dela, de tal modo que as diferentes posições
  i)   $\;B'\;$ de $\;(A,\;B) \;$ correspondentes a cada amplitude $\; \alpha\;$ são tais que $\; \overline{AB} \times \alpha \;$ que é o comprimento do arco $\; \widehat{BAB'}\;$ correspondente ao ângulo $\; \alpha \;$ ao centro $\;A\;$ da circunferência $\;(A, B)\;$
  ii)   e, da mesma forma como vimos para $\;\overline{O'O''}, \;$ podemos concluir que $\; \overline{B'B''}=\overline{AB}\times \alpha > \overline{OP}\;\;$. Esta última desigualdade é óbvia por termos tomado $\;B\;$ exterior a $\;(A,O)\;$
Para compreender o comportamento de $\;B', B''\;$ pode reinicar a janela e mover o cursor de variação dos valores em radianos de $\; \alpha\;$ e é natural que consideremos a trajetória de $\;B''\;$ como uma cicloide (pelo menos, óbvia relativamente a $\;(A, B)\;$)

$\fbox{3.}\;\;$ O ponto $\;C\;$ interior a $\;(A,\;O)\;$ e as posições $\;C'\;$ da circunferência $\;(A, \;C)\;$ imagens de $\;C\;$ obtidas por Rotação$\;(A,\;\alpha)\;$ e as posições $\;C"\;$ imagens de $\;C'\;$ por translação segundo as direcção e sentido de $\;\overrightarrow{OP}\;$ e comprimento $\;\overline{AC}\times \alpha < \overline{OP}\;$ porque o ponto $\;C\;$ do interior de $\;(A,O)\;$ roda sobre a circunferência $\;(A, \;C)\;$ de raio $\;\overline{AC}\;$ menor que $\; \overline{AO},\;$ raio de $\;(A,O).\;$
Esta curva (lugar geométrico das posições $\;C''\;$) é uma cicloide tão naturalmente como as outras.


NOTA: Os casos das posições $\;A'\;$ e $\;P\;$ ou mesmo $\;O''\;$ podem ser considerados casos particulares das duas últimas...