11.11.13

Inversão e antiparalelismo



Dizemos que duas retas $\;a\;$ e $\;c\;$ são antiparalelas relativamente a duas $\;b\;$ e $\;d\;$ quando o quadrilátero formado pelas quatro retas $a,\; b,\; c,\; d\;$ for cíclico (com os vértices $\;a.b,\; b.c,\; c.d,\; d.a\;\;$ sobre uma circunferência)
Se $A'$ e $B'$ são inversos de $A$ e $B$, então $AB$ e $A'B'$ são antiparalelas relativamente a $AA'$ e $BB'$ (dito de outros modos, $A, A', B, B'$ são vértices de um quadrilátero inscrito numa circunferência ou $A, A', B, B'$ são concíclicos ou os ângulos opostos do quadrilátero de vértices $A, A', B, B'$ são suplementares)


@ geometrias, 10 de Novembro de 2013, Criado com GeoGebra



Por definição de $I(O, r^2)$, se a $A$ corrresponde $A'$ e a $B$ corresponde $B'$, $$OA\times OA'=OB \times OB'=r^2 \;\; \mbox{de onde decorre}\;\; \frac{OB'}{OA} = \frac{OA'}{OB} \;.$$ Por isso, os triângulos $\Delta OAB$ e $\Delta OA'B'$ são semelhantes, (caso $LAL$), pois os pares de lados correspondentes $(OB', OA)$ e $(OA', OB)$ de um ângulo igual $\angle AOB = \angle B'OA'$ são diretamente proporcionais.
Podemos assim, escrever que $$\frac{A'B'}{AB}=\frac{OB'}{OA} = \frac{OA'}{OB}$$ e $\angle OBA = \angle OA'B'$, opostos respetivamente de $OA$ e de $OB'$; $\angle OAB = \angle OB'A'$, opostos respetivamente de $OB$ e de $OA'$.
Finalmente, como $ \angle OAB$ é suplementar de $\angle BAA'$, este é suplementar de $\angle BB'A'$ e também por $\angle OBA$ é suplementar de $\angle ABB'$, este é suplementar de $\angle AA'B'$.
Fica assim provado que para um quadrilátero de vértices $A, A', B, B'$, em que os elementos de cada um dos pares $(A, A')$ e $(B, B')$ se correspondem por uma dada inversão, os pares de ângulos opostos são suplementares ou que as retas $AB$ e $A'B'$ são antiparalelas relativamente a $AA'$ e $BB'$. $\hspace{0.5 cm}\square$

8.11.13

Máquina: Inversor (de Peaucellier, Lipkin, Hart,…)

Inversor de Peaucellier - GeoGebra Folha Gráfica Dinâmica

Inversor de Peaucellier



O problema de construir um maquinismo articulado para traçar uma reta foi resolvido por A. Peaucellier em 1864. Apesar da invenção ter sido anunciada em 1867, num encontro da Sociedade Filomática de Paris, o trabalho de Peaucellier só teve grande repercussão depois de Lipkin, discipulo de Chebishev, ter reinventado independentemente o mecanismo em 1871. Chebishev tinha tentado provar a impossibilidade de tal mecanismo. Só depois do reconheciemnto de Lipkin na Rússia, é que Peaucellier foi reconhecido e premiado com o grande prémio da Mecânica do Instituto de França. O mecanismo de Peaucellier usa sete barras articuladas com 3 pontos fixos. Em 1874, H. Hart descobriu um maquinismo articulado de 5 barras para desenhar uma reta. Desde então não há notícia de que alguém tenha conseguido reduzir o número de barras necessárias.
Descobriram-se vários mecanismos articulados para construir curvas especiais como cónicas, cardióide, leminiscatas e cissóides. E provou-se que há mecanismos articulados para desenhar qualquer curva algébrica, e que não existe qualquer mecanismo articulado para traçar curvas transcendentes.

Tanto o mecanismo de Peaucellier como o de Hart têm por base a inversão de uma circunferência que passa pelo centro de inversão.
Apresenta-se, na construção seguinte, um inversor que parte de 2 pontos fixos O e D, a partir do qual se define P sobre a circunferência de centro D que passa por P. O fundamental do mecanismo é um losango feito por quatro barras (a castanho), de comprimento dado, articuladas em P, A, P' e B. Também as barras OA e OB (a verde) devem ter o mesmo comprimento, maior que OP. Claro que, DP=DO > OP/2, já que queremos que a circunferência que P percorre (em parte) passe por O se queremos uma reta a ser percorrida por P' inverso de P.
Se P percorresse livremente a circunferência de centro D e raio DP, P' percorreria uma reta acabada. O mecanismo construído tem limitações, como é natural.


Para o caso ilustrado na figura, podemos verificar que a inversão de centro O que transforma P em P' tem potência OA2 - PA2 (constante, diferença dos quadrados de comprimentos fixados). Assim, considerando nos cálculos, que se seguem, segmentos orientados, temos OP=OC-PC e OP'=OC+PC. Por isso, podemos escrever

OP.OP'=OC2 - PC2=(OC2+ CA2) -(PC2+ CA2) =OA2 - PA2,

já que 2OC.CA=0 e 2PC.CA=0 (OC perpendicular a CA, e PC perpendicular a CA).


© geometrias, 5 de Novembro de 2013, Criado com GeoGebra
Howard Eves, Fundamentals of Modern Elementary Geometry. Jones and Bartlett Pub. Boston:1992