28.3.12

Exercício Interativo: Polo trilinear de uma reta

A reta p corta os lados do triângulo ABC. Determine o polo trilinear P da reta p no sentido dual da definição e da construção descrita e feita na entrada anterior. ....................... Sugestão:
Tome P'a=p.BC. E determine Pa: H(BC,P'aPa). Depois determine Pb e Pc.

Para pensar:
a) O que acontece se nós estendermos as definições de polo e polares trilineares para quando o ponto P estiver sobre algum lado do triângulo ou for algum dos seus vértices? O que acontece quando a reta p cortar os lados do triângulo em algum vértice ou quando a reta p corta algum dos lados do triângulo num ponto do infinito?
b) Pense na possibilidade de determinar o polo de uma reta no infinito relativamente a um triângulo ABC dado.
Já apresentámos o problema resolvido em geral mais do que uma vez. Por exemplo, em da polar trilinear ao polo (de 2009) que transcrevemos:
A pedido de um leitor anónimo, apresentamos a resposta à pergunta:
Dada uma recta e um triângulo de que ela é polar trilinear, como se determina o pólo correspondente?



[A.A.M.] reconstrutor de serviço



Consideramos que a resposta está na entrada Polar trilinear de 9 de Dezembro de 2008. Mas aqui fica tratado o problema posto.


Na construção dinâmica, que pode seguir por etapas, ao deslizar o cursor ao fundo da janela, parte-se da polar p e para determinar o pólo P respectivo, seguem-se os passos:

  1. Determinam-se os pontos de intersecção da recta p com os lados do triângulo ABC - P'a, P'b e P'c.

  2. O vértice Pc do triângulo ceviano de ABC que procuramos separa harmonicamente os pontos A, B e P'c e que é colinear com os pontos C e Q, este último a separar harmonicamente os pontos P'a, P'b e P'c. A determinação de Pc ou de Q faz-se pela construção de um quadrilátero completo de que CQ é diagonal

  3. Determinado Pc, imediatamente se determinam Pa e Pb tirando as rectas P'a Pc e P'bPc que intersectam os lados de ABC em Pa e Pb. A recta P'cPa passa por Pb e, por isso PaPbPc determinam um triângulo inscrito em ABC com lados a intersectar p nos pontos de intersecção desta com o triângulo original.

  4. As cevianas APa, BPb e CPc intersectam-se no pólo P, correspondente à polar trilinear p

Polar trilinear de um ponto

PolTril Seja o triângulo ABC e um ponto P que não coincida com qualquer dos seus vértices nem incida em qualquer dos seus lados a=BC, b=AC e c=AB. Tiremos por P as retas PA, PB e PC e chamemos Pa a PA.BC, Pb=PB.AC e Pc=PC.AB
E tomemmos as cevianas do triângulo ABC, APa, BPb e CPc que incidem em P.
Consideremos agora o triângulo cujos vértices são os pés das cevianas PaPbPc e as interseções PcPb.BC=P'a, PaPc.AC=P'b e PaPb.AB=P'c.
Então:
a) P'a, P'b e P'c são colineares
Como ABC e PaPbPc são perspetivos por P (centro), serão perspetivos por uma reta (eixo) que não pode ser outra senão a reta dos pontos de interseção dos pares de lados correspondentes
b) H(BC, PaP'a), H(AC, PbP'b) e H(BC,PcP'c)
Basta considerar o quadrilátero completo PbPcAP para concluir que se verifica H(BC,PaP'a). De igual modo se verificarão as outras relações.

Poncelet chamou polar trilinear de P à reta p em que incidem os pontos P'a, P'b e P'c.

Dualmente: dado um triângulo ABC e uma reta p que corte os lados do triângulo sem passar por qualquer dos seus vértices, pode falar-se do polo trilinear P da reta p. Um problema pode ser determiná-lo.