15.11.13

Antiparalelas invertem-se em paralelas


Antiparalelas podem ser invertidas em paralelas


Se $A, B, C, D$ são quatro pontos tais que $AB$ e $CD$ são antiparalelas relativamente a $AD$ e $BC$, então os quatro pontos podem ser invertidos em vértices de um retângulo


Desloque o cursor $\;\fbox{ n }\;$ para acompanhar os passos da construção

© geometrias, 13 de Novembro de 2013, Criado com GeoGebra



Passos:
  1. São dados $A,B,C,D$ pontos de uma circunferência $(O)$.
  2. As retas $AB$ e $CD$ são antiparalelas relativamente a $BC$ e $AD$: $\angle ABC + \angle BCD = 180^o$ e $\angle ABC +\angle CAD = 180^o$.
  3. Determinam-se as circunferências:
    • $(O_1)$ ortogonal a $(O)$ que passa por $A$ e $C$: $O_1$ é a interseção da perpendicular a $AO$ com a mediatriz de $AC$
    • $(O_2)$ ortogonal a $(O)$ que passa por $B$ e $D$.
  4. $(O_1)$ e $(O_2)$ intersetam-se em $X$ e $Y$
  5. Toma-se um deles para centro da circunferência de inversão (tracejada a vermelho) com raio $r$ qualquer; no caso tomámos a inversão $I(X,r^2)$
  6. A inversa de $(O)$ é uma circunferência que terá o seu centro sobre $OX$, reta que conterá um dos seus diâmetros.
  7. Essa circunferência interseta $\;XA, XB, XC, XD\; $ em $\;A', B', C', D'\;$ inversos respetivamente de $\;A, B, C, D$
  8. $A'B'C'D'\;$ é um retângulo
  9. Nota: Como $\;(O_1)\;$ passa por $A$ e $C$ a sua inversa é a reta $\;A'C'$. Do mesmo modo para $\;(O_2)\;$ cuja inversa é $\;B'D'$. O centro da circunferência inversa de $(O)$ está sobre $OX$, $A'C'$ e $\;B'D'$.

11.11.13

Inversão e antiparalelismo



Dizemos que duas retas $\;a\;$ e $\;c\;$ são antiparalelas relativamente a duas $\;b\;$ e $\;d\;$ quando o quadrilátero formado pelas quatro retas $a,\; b,\; c,\; d\;$ for cíclico (com os vértices $\;a.b,\; b.c,\; c.d,\; d.a\;\;$ sobre uma circunferência)
Se $A'$ e $B'$ são inversos de $A$ e $B$, então $AB$ e $A'B'$ são antiparalelas relativamente a $AA'$ e $BB'$ (dito de outros modos, $A, A', B, B'$ são vértices de um quadrilátero inscrito numa circunferência ou $A, A', B, B'$ são concíclicos ou os ângulos opostos do quadrilátero de vértices $A, A', B, B'$ são suplementares)


@ geometrias, 10 de Novembro de 2013, Criado com GeoGebra



Por definição de $I(O, r^2)$, se a $A$ corrresponde $A'$ e a $B$ corresponde $B'$, $$OA\times OA'=OB \times OB'=r^2 \;\; \mbox{de onde decorre}\;\; \frac{OB'}{OA} = \frac{OA'}{OB} \;.$$ Por isso, os triângulos $\Delta OAB$ e $\Delta OA'B'$ são semelhantes, (caso $LAL$), pois os pares de lados correspondentes $(OB', OA)$ e $(OA', OB)$ de um ângulo igual $\angle AOB = \angle B'OA'$ são diretamente proporcionais.
Podemos assim, escrever que $$\frac{A'B'}{AB}=\frac{OB'}{OA} = \frac{OA'}{OB}$$ e $\angle OBA = \angle OA'B'$, opostos respetivamente de $OA$ e de $OB'$; $\angle OAB = \angle OB'A'$, opostos respetivamente de $OB$ e de $OA'$.
Finalmente, como $ \angle OAB$ é suplementar de $\angle BAA'$, este é suplementar de $\angle BB'A'$ e também por $\angle OBA$ é suplementar de $\angle ABB'$, este é suplementar de $\angle AA'B'$.
Fica assim provado que para um quadrilátero de vértices $A, A', B, B'$, em que os elementos de cada um dos pares $(A, A')$ e $(B, B')$ se correspondem por uma dada inversão, os pares de ângulos opostos são suplementares ou que as retas $AB$ e $A'B'$ são antiparalelas relativamente a $AA'$ e $BB'$. $\hspace{0.5 cm}\square$