12.4.13

Teorema de Armin Saam (primeira parte e respetiva ilustração)

Richter-Gebert chama a atenção para a beleza e interesse de um Teorema atribuído a Armin Saam que aqui apresentamos em duas ilustrações dinâmicas. Trata-se de invariâncias para um esquema cíclico de perspetividades... Na nossa construção tomamos 5 retas {ri, i=1,2,3,4,5} inicidindo todas no ponto O e sobre cada ri (a negro) marcamos um ponto Pi (em castanho) que utilizaremos como centro de perspetividade.
A figura é bem elucidativa do que fizemos:
Começamos por tomar A1 (verde) sobre r1. Para obter A2 sobre r2 como imagem de A1 pela perspetividade de centro P4: {A2}= A1P4.r2. E, sucessivamente, {A3}=A2P5.r3, {A4}=A3P1.r4, {A5}=A4P2.r5 até {A6}=A5P3.r1.
O mais natural é que A1 não coincida com A6. Quando A1 se desloca sobre r1 aproximando-se de O, A2 afasta-se de O, A3 aproxima-se de O, etc. Alternativamente, os pontos Ai, de ordem par ou ímpar, aproximam-se ou afastam-se de O.
Em particular, A6 move-se sobre r1 no sentido contrário ao movimento de A1 e é, portanto, de esperar que haja uma posição C em que A1 e A6 coincidem.
Essa posição C pode ser determinada como conjugado harmónico de O relativamente a A1 e A6, ou seja (A1, A6; C, O) é um quaterno harmónico, que se mantém invariante quando A1 se desloca sobre A1. Isso está ilustrado na figura.
Nesta configuração de um número ímpar n de retas passando por um porto comum O, considerando o transformado An+1 de A1 pela composição cíclica de perspetividades (esquema da figura), acontece que
An+1=A1 numa posição C quando e só quando (A1,An+1; C, O)=-1,
como pode verificar quando desloca A1 sobre r1.


Por favor habilite Java para uma construção interativa (com Cinderella).



Seguindo
Richter-Gebert. Perspectives on Projective Geometry - A guided tour through real and complex geometry. Springer-Verlag. Berlin: 2011

9.4.13

Transporte da razão dupla (esquema cíclico)

Como já tínhamos antecipado na entrada anterior, vamos agora transportar razões duplas seguindo uma esquema cíclico. A construção que segue serve de exemplo.
Tomámos n retas (n=6, no caso) - {ri, i = 1, 2, ..., n} - todas incidentes num ponto D. Na primeira reta, r1, tomamos 3 pontos A, B, C quaisquer, que são transferidos por uma composta de perspetividades para a última das retas, r1 no caso. Claro que estas perspetividades deixam invariante o ponto D incidente em todas as retas ri
Nestas condições, os correspondentes pontos A', B' C' em r6 serão tais que (A', B'; C', D') = (A, B; C, D), já que a razão dupla é preservada por perspetividade.
Tome-se agora o ponto AA'.BB', chamemos-lhe P. Há uma perspetividade de centro P que transforma A em A', B em B' e D em D e transforma também C em C' precisamente porque (A', B'; C', D') = (A, B; C, D). E isso quer dizer que CC' passa por AA'.BB'
Claro que esta construção serve de modelo para provar um teorema para qualquer n, natural.
Pode mover-se A, B ou C e verificar que o ponto P (AA'.BB'.CC') se mantém invariante. Claro que se mudarmos a posição de alguma retas ou algum centro de alguma das perspetividades do esquema, a perspetividade que leva de pontos de r para pontos de r' será outra e também será outro o seu centro.


Por favor habilite Java para uma construção interativa (com Cinderella).

Resultado inteiramente análogo pode ser observado para n=5, como ilustra a construção ao lado.
Movendo A,B, C poderá verificar o resultado: a perspetividade de centro AA'.BB' que tansforma os pontos A, B e D da reta r nos pontos A', B', D da reta r' também transforma C em C'.


Por favor habilite Java para uma construção interativa (com Cinderella).
Seguindo
Richter-Gebert. Perspectives on Projective Geometry - A guided tour through real and complex geometry. Springer-Verlag. Berlin: 2011