4.5.10

Outro triângulo rectângulo com razões áureas

Existem outros triângulos rectângulos que por conterem (ou esconderem) razões áureas são também muitas vezes apelidados de ouro.
Um desses triângulos é o triângulo de 3, 4 e 5





BF é a bissectriz do ângulo B que intersecta o lado AC em O.
D e F são os pontos de intersecção da bissectriz com o círculo de centro O e raio AO.
A’ é o ponto de tangência do círculo (de centro O e raio AO) com a hipotenusa. E é a intersecção da corda [AA’] com a bissectriz.
Então:
• D divide [BF] em média e extrema razão
• OE/ED= Φ/2
Podemos ainda referir que a razão entre a hipotenusa e o cateto menor é a razão entre dois números consecutivos da sequência de Fibonacci (5/3) e considerá-la uma aproximação (grosseira) do número de ouro

26.4.10

Lúnula de ouro

Na construção que se segue, quando Q, ao deslocar-se sobre C1, coincide com C ou C'. os triângulos rectângulos [AMP], [PMQ], [QMR] e [RMB] são de ouro.





Interessante: M é o centro de gravidade da lúnula de ouro (C2-C1).

De facto,



1) O centro de gravidade de um círculo é o seu centro. (O1 e O2 são centros de gravidade de C1 e C2, respectivamente)
2) De um modo geral, O centro de gravidade de uma figura formada por dois círculos estará sobre O1O2 considerando O1 e O2 com pesos proporcionais às suas áreas.
3) A razão entre as áreas de dois círculos é a razão entre os quadrados dos seus raios
4) Divide-se o segmento O1O2 em segmentos com essa mesma razão. Podemos fazê-lo de uma forma aditiva (se as áreas se juntassem) ou de uma forma subtractiva como acontece no caso da lúnula (a vermelha).

Nota: Na construção que fez, para calcular os quadrados dos raios, a Mariana considerou o raio maior O1 como unidade.

Na animação que se segue, vê-se que o centro de gravidade só coincide com M quando é áurea a razão entre os raios das circunferências que definem a lúnula