Para mostrar que, para um triângulo qualquer, os circuncentro O, baricentro G e ortocentro H estão sobre a mesma recta (de Euler), utilizámos a homotetia de centro em G e razão 2 que transforma O em H. Este novo resultado recebe confirmação com recurso à mesma homotetia. Por ela, O é transformado em H e Ma em A, já que 2GMa=GA. Em consequência, OMa é transformado em AH, sendo 2OMa=AH.
28.1.10
Demonstrando com homotetias
Para qualquer triângulo ABC, a distância do circuncentro O a um lado (BC, por exemplo) é metade da distância de H para o vértice oposto a esse lado (A, no caso).
Para mostrar que, para um triângulo qualquer, os circuncentro O, baricentro G e ortocentro H estão sobre a mesma recta (de Euler), utilizámos a homotetia de centro em G e razão 2 que transforma O em H. Este novo resultado recebe confirmação com recurso à mesma homotetia. Por ela, O é transformado em H e Ma em A, já que 2GMa=GA. Em consequência, OMa é transformado em AH, sendo 2OMa=AH.
Para mostrar que, para um triângulo qualquer, os circuncentro O, baricentro G e ortocentro H estão sobre a mesma recta (de Euler), utilizámos a homotetia de centro em G e razão 2 que transforma O em H. Este novo resultado recebe confirmação com recurso à mesma homotetia. Por ela, O é transformado em H e Ma em A, já que 2GMa=GA. Em consequência, OMa é transformado em AH, sendo 2OMa=AH.
23.1.10
Exercício de reflexão com régua e compasso
Temos vindo a propor alguns exercícios elementares com transformações geométricas do plano.
Aqui propomos a construção do transformado de um triângulo pela reflexão de eixo e (a preto)
Na construção dinâmica que se segue, pode usar as ferramentas disponíveis para construir a imagem do triângulo, como pode seguir a nossa proposta clicando sobre o botão ?
Aqui propomos a construção do transformado de um triângulo pela reflexão de eixo e (a preto)
Na construção dinâmica que se segue, pode usar as ferramentas disponíveis para construir a imagem do triângulo, como pode seguir a nossa proposta clicando sobre o botão ?
Subscrever:
Mensagens (Atom)