Dada uma homologia pelos seus centro, eixo e recta limite, determinar os focos da elipse que se obtém como transformada de uma dada circunferência por essa homologia.
18.3.08
Focos da elipse homóloga de uma circunferência
Exercício interactivo
Dada uma homologia pelos seus centro, eixo e recta limite, determinar os focos da elipse que se obtém como transformada de uma dada circunferência por essa homologia.
Dada uma homologia pelos seus centro, eixo e recta limite, determinar os focos da elipse que se obtém como transformada de uma dada circunferência por essa homologia.
17.3.08
Eixos de uma elipse e homologia
Consideremos a homologia de centro O, eixo e, recta limite l . É dada a circunferência de centro K; pretendemos obter os eixos da elipse homológica desta circunferência.
[A.A.M.]
Notas:
Como vimos no artigo Diâmetros conjugados e homologia, de 12/03/2008, as direcções OL1 e OL2 definem as direcções de dois diâmetros conjugados. Então, para obtermos o único par de diâmetros conjugados perpendiculares - eixos - as direcções OL1 e OL2 devem ser perpendiculares. Temos, assim, de determinar uma circunferência ortogonal à dada que contenha O e com centro K' sobre a recta limite.
Para a determinação do centro dessa circunferência, recordemos que, se uma recta intersecta duas circunferências e passa pelo centro de uma delas, as intersecções formam uma quaterno harmónico. A construção baseia-se em determinar o conjugado harmónico G de O em relação à circunferência dada. Por O tracemos a tangente t à circunferência dada e, pelo ponto de tangência T, tracemos a perpendicular à recta OK: o pé da perpendicular é o ponto G. Toda a circunferência que contenha O e K é ortogonal à dada. Desse conjunto traçamos a que tem centro sobre l.Temos assim a possibilidade de traçar as rectas OL1 e OL2, ortogonais, que dão as direcções dos eixos. Obtemo-los seguindo o processo geral para obter diâmetros conjugados.
Nota: Tendo um par de diâmetros conjugados, para obter os eixos poderá utilizar o processo que indicámos no artigo Dos diãmetros conjugados para os eixos , de 11/06/2007.
[A.A.M.]
Notas:
Como vimos no artigo Diâmetros conjugados e homologia, de 12/03/2008, as direcções OL1 e OL2 definem as direcções de dois diâmetros conjugados. Então, para obtermos o único par de diâmetros conjugados perpendiculares - eixos - as direcções OL1 e OL2 devem ser perpendiculares. Temos, assim, de determinar uma circunferência ortogonal à dada que contenha O e com centro K' sobre a recta limite.
Para a determinação do centro dessa circunferência, recordemos que, se uma recta intersecta duas circunferências e passa pelo centro de uma delas, as intersecções formam uma quaterno harmónico. A construção baseia-se em determinar o conjugado harmónico G de O em relação à circunferência dada. Por O tracemos a tangente t à circunferência dada e, pelo ponto de tangência T, tracemos a perpendicular à recta OK: o pé da perpendicular é o ponto G. Toda a circunferência que contenha O e K é ortogonal à dada. Desse conjunto traçamos a que tem centro sobre l.Temos assim a possibilidade de traçar as rectas OL1 e OL2, ortogonais, que dão as direcções dos eixos. Obtemo-los seguindo o processo geral para obter diâmetros conjugados.
Nota: Tendo um par de diâmetros conjugados, para obter os eixos poderá utilizar o processo que indicámos no artigo Dos diãmetros conjugados para os eixos , de 11/06/2007.
Subscrever:
Mensagens (Atom)